Skip to content
Snippets Groups Projects
Commit 0171d140 authored by patavirt's avatar patavirt
Browse files

DOC

parent eff47c46
No related branches found
No related tags found
No related merge requests found
......@@ -49,16 +49,28 @@ the symmetry.
## Derivative term
We discretize the derivatives a
```math
D_{ij}
:=
\frac{1}{h}[Q(i) U_{ij} - U_{ij} Q(j)]
\,,
\qquad
\Rightarrow
Q(i) D_{ij} = - D_{ij} Q(j)
\,,
```
which satisfies an anticommutation relation analogous to continuum derivative.
We then discretize
```math
S_2
=
\mathrm{Tr} D(\hat{\nabla} Q)^2
\mapsto
D
\frac{2d}{|\mathrm{neigh}|} \frac{h^d}{h^2} \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr}[Q(i) - U_{ij}Q(j)U_{ji}]^2
-D \frac{2d}{|\mathrm{neigh}|} h^d \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr} D_{ij} D_{ji}
```
where $`d`$ is the space dimension.
where $`d`$ is the space dimension and `|neigh|` the number of neighbors on the grid.
Expanding in small $`h`$ we have
```math
......@@ -112,21 +124,7 @@ which then allows expressing $`F_{ij}`$ in terms of the link matrices.
## Hall term
When discretizing the $`Q\hat{\nabla}_iQ\hat{\nabla}_jQ`$ part, we can
consider a discrete derivative
```math
D_{ij}
:=
Q(i) U_{ij} - U_{ij} Q(j)
\,,
\qquad
\Rightarrow
Q(i) D_{ij} = - D_{ij} Q(j)
\,,
```
which satisfies a discrete gauge-invariant version of the $`Q (\hat{\nabla}Q) =
-(\hat{\nabla}Q) Q`$ relation. Then, in the plaquette of Fig. 1 we
have
In the plaquette of Fig. 1 we have
```math
\mathrm{tr}
F_{\mu\nu}Q \hat{\nabla}_\mu Q \hat{\nabla}_\nu Q
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment