diff --git a/doc/discretization.md b/doc/discretization.md index 10f0dfc509e37bf39933d6970a894cad9193e042..792e7692c259e9ada2d8c0e7a160577889f64f28 100644 --- a/doc/discretization.md +++ b/doc/discretization.md @@ -49,16 +49,28 @@ the symmetry. ## Derivative term +We discretize the derivatives a +```math + D_{ij} + := + \frac{1}{h}[Q(i) U_{ij} - U_{ij} Q(j)] + \,, + \qquad + \Rightarrow + Q(i) D_{ij} = - D_{ij} Q(j) + \,, +``` +which satisfies an anticommutation relation analogous to continuum derivative. + We then discretize ```math S_2 = \mathrm{Tr} D(\hat{\nabla} Q)^2 \mapsto -D -\frac{2d}{|\mathrm{neigh}|} \frac{h^d}{h^2} \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr}[Q(i) - U_{ij}Q(j)U_{ji}]^2 +-D \frac{2d}{|\mathrm{neigh}|} h^d \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr} D_{ij} D_{ji} ``` -where $`d`$ is the space dimension. +where $`d`$ is the space dimension and `|neigh|` the number of neighbors on the grid. Expanding in small $`h`$ we have ```math @@ -112,21 +124,7 @@ which then allows expressing $`F_{ij}`$ in terms of the link matrices. ## Hall term -When discretizing the $`Q\hat{\nabla}_iQ\hat{\nabla}_jQ`$ part, we can -consider a discrete derivative -```math - D_{ij} - := - Q(i) U_{ij} - U_{ij} Q(j) - \,, - \qquad - \Rightarrow - Q(i) D_{ij} = - D_{ij} Q(j) - \,, -``` -which satisfies a discrete gauge-invariant version of the $`Q (\hat{\nabla}Q) = --(\hat{\nabla}Q) Q`$ relation. Then, in the plaquette of Fig. 1 we -have +In the plaquette of Fig. 1 we have ```math \mathrm{tr} F_{\mu\nu}Q \hat{\nabla}_\mu Q \hat{\nabla}_\nu Q