Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
U
usadelndsoc
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
JYU Condensed Matter Theory
usadelndsoc
Commits
928fafd1
Commit
928fafd1
authored
1 year ago
by
patavirt
Browse files
Options
Downloads
Patches
Plain Diff
examples: compute diode effect properly in cpr_sns
Also try to clarify the mapping between alpha, eta and Gamma_DP/ST
parent
084c6df0
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/cpr_sns.py
+105
-45
105 additions, 45 deletions
examples/cpr_sns.py
with
105 additions
and
45 deletions
examples/cpr_sns.py
+
105
−
45
View file @
928fafd1
...
...
@@ -20,11 +20,11 @@ import collections
mem
=
joblib
.
Memory
(
"
cache
"
)
def
get_solver
(
soc_alpha
,
eta
,
phi
,
L
=
10
,
h
=
0.5
,
D
=
1.0
,
n
=
5
):
def
get_solver
(
soc_alpha
,
eta
,
phi
,
L
=
10
,
W
=
10
,
h
=
0.5
,
D
=
1.0
,
n
=
5
):
sol
=
Solver
(
nx
=
n
,
ny
=
n
)
sol
.
mask
[...]
=
MASK_NONE
sol
.
Lx
=
L
sol
.
Ly
=
L
sol
.
Ly
=
W
sol
.
Omega
[...]
=
0
sol
.
Delta
[
0
,
:]
=
np
.
eye
(
2
)
*
np
.
exp
(
1j
*
phi
/
2
)
...
...
@@ -40,8 +40,8 @@ def get_solver(soc_alpha, eta, phi, L=10, h=0.5, D=1.0, n=5):
dx
=
sol
.
Lx
/
nx
dy
=
sol
.
Ly
/
ny
Ax
=
2
*
soc_alpha
*
np
.
kron
(
S_0
,
S_y
)
Ay
=
-
2
*
soc_alpha
*
np
.
kron
(
S_0
,
S_x
)
Ax
=
soc_alpha
*
np
.
kron
(
S_0
,
S_y
)
Ay
=
-
soc_alpha
*
np
.
kron
(
S_0
,
S_x
)
sol
.
Ux
[...]
=
expm
(
1j
*
dx
*
Ax
)
sol
.
Uy
[...]
=
expm
(
1j
*
dy
*
Ay
)
...
...
@@ -56,11 +56,10 @@ Res = collections.namedtuple("Res", ["x", "y", "J", "Jx", "Jy"])
@vectorize_parallel
(
returns_object
=
True
,
noarray
=
True
)
@usadelndsoc.with_log_level
(
logging
.
WARNING
)
def
j
(
T
,
h
,
phi
,
n
=
15
,
eta
=
0.1
,
alpha_soc
=
0.1
,
L
=
10
):
def
j
(
T
,
h
,
phi
,
n
=
15
,
eta
=
0.1
,
alpha_soc
=
0.1
,
L
=
10
,
W
=
2
):
sol
=
get_solver
(
soc_alpha
=
alpha_soc
,
eta
=
eta
,
L
=
L
,
W
=
W
,
n
=
n
,
phi
=
phi
,
h
=
h
)
sol
=
get_solver
(
soc_alpha
=
alpha_soc
,
eta
=
eta
,
L
=
L
,
n
=
n
,
phi
=
phi
,
h
=
h
)
E_typical
=
10
+
10
*
T
E_typical
=
10
+
10
*
abs
(
T
)
w
,
a
=
get_matsubara_sum
(
T
,
E_typical
)
t3
=
np
.
kron
(
S_z
,
S_0
)
...
...
@@ -76,51 +75,112 @@ def j(T, h, phi, n=15, eta=0.1, alpha_soc=0.1, L=10):
return
(
sol
.
x
,
sol
.
y
,
J
,
Jx
,
Jy
)
def
main
():
T
=
0.1
alpha_soc
=
0.9
h
=
np
.
r_
[
0.0
,
1.0
]
phi
=
np
.
linspace
(
-
pi
,
pi
,
37
)
def
Gamma_to_alpha
(
Gamma_DP
,
Gamma_ST
):
r
"""
Transform from (Gamma_DP, Gamma_ST) to (alpha_soc, eta).
.. math::
\Gamma_{DP} &= 2 \alpha^2 p_F^2 \tau \\
\Gamma_{ST} &= \Gamma_{DP} \frac{\alpha\tau}{\xi_0}
res
=
j
(
T
,
h
[:,
None
],
phi
[
None
,
:],
alpha_soc
=
alpha_soc
,
L
=
3
,
n
=
20
,
mem
=
mem
)
res0
=
j
(
T
,
h
[:,
None
],
phi
[
None
,
:],
alpha_soc
=
alpha_soc
,
L
=
3
,
mem
=
mem
)
res1
=
j
(
T
,
h
[:,
None
],
phi
[
None
,
:],
alpha_soc
=
alpha_soc
,
L
=
3
,
n
=
10
,
mem
=
mem
)
and :math:`\xi_0^2 = D/(2\pi\Delta_0)`.
The length unit is :math:`L_0 = \sqrt{D/E_0}` where
:math:`E_0` is the energy unit.
"""
alpha_soc
=
(
Gamma_DP
/
4
)
**
0.5
eta
=
Gamma_ST
/
(
4
*
np
.
sqrt
(
2
*
pi
)
*
alpha_soc
**
3
)
return
alpha_soc
,
eta
def
do
(
W_xi
=
6
,
multin
=
False
):
T
=
0.1
Gamma_DP
=
10
Gamma_ST
=
1
h
=
-
10.0
phi
=
np
.
linspace
(
0
,
2
*
pi
,
37
)
xi
=
1
/
np
.
sqrt
(
2
*
pi
)
L
=
np
.
array
([
0.1
,
1.5
,
2
,
3
])
*
xi
W
=
W_xi
*
xi
alpha
,
eta
=
Gamma_to_alpha
(
Gamma_DP
,
Gamma_ST
)
res
=
j
(
T
,
h
,
phi
[
None
,
:],
alpha_soc
=
alpha
,
eta
=
eta
,
L
=
L
[:,
None
],
W
=
W
,
n
=
10
,
mem
=
mem
)
if
multin
:
res0
=
j
(
T
,
h
,
phi
[
None
,
:],
alpha_soc
=
alpha
,
eta
=
eta
,
L
=
L
[:,
None
],
W
=
W
,
n
=
5
,
mem
=
mem
,
)
res1
=
j
(
T
,
h
,
phi
[
None
,
:],
alpha_soc
=
alpha
,
eta
=
eta
,
L
=
L
[:,
None
],
W
=
W
,
n
=
20
,
mem
=
mem
,
)
Jx_mean
=
np
.
asarray
(
[
Res
(
*
x
).
Jx
[
1
:
-
1
].
sum
(
axis
=
1
).
mean
(
axis
=
0
)
for
x
in
res
.
flat
]
).
reshape
(
res
.
shape
)
Jx0_mean
=
np
.
asarray
(
[
Res
(
*
x
).
Jx
[
1
:
-
1
].
sum
(
axis
=
1
).
mean
(
axis
=
0
)
for
x
in
res0
.
flat
]
).
reshape
(
res
.
shape
)
if
multin
:
Jx0_mean
=
np
.
asarray
(
[
Res
(
*
x
).
Jx
[
1
:
-
1
].
sum
(
axis
=
1
).
mean
(
axis
=
0
)
for
x
in
res0
.
flat
]
).
reshape
(
res
.
shape
)
Jx1_mean
=
np
.
asarray
(
[
Res
(
*
x
).
Jx
[
1
:
-
1
].
sum
(
axis
=
1
).
mean
(
axis
=
0
)
for
x
in
res1
.
flat
]
).
reshape
(
res
.
shape
)
Jx1_mean
=
np
.
asarray
(
[
Res
(
*
x
).
Jx
[
1
:
-
1
].
sum
(
axis
=
1
).
mean
(
axis
=
0
)
for
x
in
res1
.
flat
]
).
reshape
(
res
.
shape
)
fig
,
axs
=
plt
.
subplots
(
1
,
2
,
layout
=
"
compressed
"
)
ax
=
axs
[
0
]
ax
.
plot
(
phi
/
pi
,
Jx_mean
.
T
/
abs
(
Jx_mean
).
max
(
axis
=
1
))
if
multin
:
ax
.
plot
(
phi
/
pi
,
Jx0_mean
.
T
/
abs
(
Jx_mean
).
max
(
axis
=
1
),
"
k:
"
)
ax
.
plot
(
phi
/
pi
,
Jx1_mean
.
T
/
abs
(
Jx_mean
).
max
(
axis
=
1
),
"
k:
"
)
ax
.
set_xlabel
(
r
"
$\varphi / \pi$
"
)
ax
.
set_ylabel
(
r
"
$I / I_{\mathrm{max}}$
"
)
ax
.
legend
(
L
/
xi
,
title
=
r
"
$L/\xi$
"
,
loc
=
"
lower right
"
)
def
eff
(
Jx
):
Jm
=
Jx
.
min
(
axis
=
1
)
Jp
=
Jx
.
max
(
axis
=
1
)
return
(
abs
(
Jp
)
-
abs
(
Jm
))
/
(
abs
(
Jp
)
+
abs
(
Jm
))
plt
.
plot
(
phi
/
pi
,
Jx_mean
.
T
)
plt
.
plot
(
phi
/
pi
,
Jx0_mean
.
T
,
'
k:
'
)
plt
.
plot
(
phi
/
pi
,
Jx1_mean
.
T
,
'
k:
'
)
plt
.
xlabel
(
r
"
$\varphi / \pi$
"
)
plt
.
ylabel
(
r
"
$I$
"
)
plt
.
legend
(
h
,
title
=
"
$h$
"
)
plt
.
savefig
(
"
cpr_sns.pdf
"
)
Jx_sym
=
(
Jx_mean
+
Jx_mean
[:,::
-
1
])
/
2
Jx0_sym
=
(
Jx0_mean
+
Jx0_mean
[:,::
-
1
])
/
2
Jx1_sym
=
(
Jx1_mean
+
Jx1_mean
[:,::
-
1
])
/
2
plt
.
clf
()
plt
.
plot
(
phi
/
pi
,
Jx_sym
.
T
)
plt
.
plot
(
phi
/
pi
,
Jx0_sym
.
T
,
'
k:
'
)
plt
.
plot
(
phi
/
pi
,
Jx1_sym
.
T
,
'
k:
'
)
plt
.
xlabel
(
r
"
$\varphi / \pi$
"
)
plt
.
ylabel
(
r
"
$[I(\varphi)+I(-\varphi)]/2$
"
)
plt
.
legend
(
h
,
title
=
"
$h$
"
)
plt
.
savefig
(
"
cpr_sns_sym.pdf
"
)
print
(
Jx_mean
.
mean
(
axis
=
1
))
print
(
Jx0_mean
.
mean
(
axis
=
1
))
print
(
Jx1_mean
.
mean
(
axis
=
1
))
ax
=
axs
[
1
]
ax
.
plot
(
L
/
xi
,
100
*
eff
(
Jx_mean
))
if
multin
:
ax
.
plot
(
L
/
xi
,
100
*
eff
(
Jx0_mean
),
"
k:
"
)
ax
.
plot
(
L
/
xi
,
100
*
eff
(
Jx1_mean
),
"
k:
"
)
ax
.
set_xlabel
(
r
"
$L / \xi$
"
)
ax
.
set_ylabel
(
r
"
$\eta$ [%]
"
)
fig
.
suptitle
(
rf
"
$W =
{
W
/
xi
}
\xi_0$ $\Gamma_{{DP}} =
{
Gamma_DP
}
\Delta_0$, $\Gamma_{{ST}} =
{
Gamma_ST
}
\Delta_0$ ($\tilde{{\eta}} =
{
eta
:
.
3
g
}
$, $\tilde{{\alpha}} =
{
alpha
:
.
3
g
}
$)
"
)
fig
.
savefig
(
"
cpr_sns.pdf
"
)
def
main
():
do
()
if
__name__
==
"
__main__
"
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment