Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
U
usadelndsoc
Manage
Activity
Members
Labels
Plan
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
JYU Condensed Matter Theory
usadelndsoc
Commits
666c2cf4
Commit
666c2cf4
authored
11 months ago
by
patavirt
Browse files
Options
Downloads
Patches
Plain Diff
solver: add interpolate_J
parent
8dc4d1d4
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
usadelndsoc/solver.py
+134
-0
134 additions, 0 deletions
usadelndsoc/solver.py
with
134 additions
and
0 deletions
usadelndsoc/solver.py
+
134
−
0
View file @
666c2cf4
...
@@ -53,6 +53,7 @@ __all__ = [
...
@@ -53,6 +53,7 @@ __all__ = [
"
S_y
"
,
"
S_y
"
,
"
S_z
"
,
"
S_z
"
,
"
S_0
"
,
"
S_0
"
,
"
interpolate_J
"
,
]
]
_log
=
logging
.
getLogger
(
__name__
)
_log
=
logging
.
getLogger
(
__name__
)
...
@@ -1521,3 +1522,136 @@ def tr(M):
...
@@ -1521,3 +1522,136 @@ def tr(M):
Trace over last two dimensions
Trace over last two dimensions
"""
"""
return
np
.
trace
(
M
,
axis1
=-
2
,
axis2
=-
1
)
return
np
.
trace
(
M
,
axis1
=-
2
,
axis2
=-
1
)
def
interpolate_J
(
x0
,
y0
,
J
,
x
,
y
,
method
=
"
bilinear
"
):
r
"""
Interpolate (matrix) current components at given coordinates.
The current values are defined on links between cells, and not at
the cell centers, so special interpolation is necessary.
The interpolant inside each cell is linear :math:`J(x,y) = (J_0x + x J_1,
J_0y + y J_2)`. The component perpendicular to the cell faces is
piecewise linear, but the component parallel to cell faces is
piecewise constant. The interpolant is divergenceless inside
cells, if the matrix current values do not indicate divergence.
Parameters
----------
x0 : array, shape (nx,)
Cell x-coordinates
y0 : array, shape (ny,)
Cell y-coordinates
J : array, shape (nx, ny, 4, ...)
Matrix current, defined on links between cells.
x : array
x-coordinate to interpolate J at.
y : array
y-coordinate to interpolate J at.
method : {
'
linear
'
,
'
bilinear
'
}
Interpolation method.
Returns
-------
J_interp : array, shape broadcast_shape(x, y) + (2, ...)
Array containing x and y components of the current,
interpolated at the coordinates (x, y).
"""
dx
=
x0
[
1
]
-
x0
[
0
]
dy
=
y0
[
1
]
-
y0
[
0
]
nx
=
len
(
x0
)
ny
=
len
(
y0
)
i
=
np
.
searchsorted
(
x0
+
dx
/
2
,
x
).
clip
(
0
,
nx
-
1
)
j
=
np
.
searchsorted
(
y0
+
dy
/
2
,
y
).
clip
(
0
,
ny
-
1
)
xc
=
x
-
x0
[
i
]
yc
=
y
-
y0
[
j
]
m
=
(
(
x
<
x0
[
0
]
-
dx
/
2
)
|
(
x
>
x0
[
-
1
]
+
dx
/
2
)
|
(
y
<
y0
[
0
]
-
dy
/
2
)
|
(
y
>
y0
[
-
1
]
+
dy
/
2
)
)
Jshape
=
J
.
shape
[
3
:]
sl
=
(
Ellipsis
,)
+
(
None
,)
*
len
(
Jshape
)
slx
=
(
Ellipsis
,
0
)
+
(
None
,)
*
len
(
Jshape
)
sly
=
(
Ellipsis
,
1
)
+
(
None
,)
*
len
(
Jshape
)
I
=
np
.
empty
(
m
.
shape
+
(
2
,)
+
Jshape
,
dtype
=
J
.
dtype
)
if
method
==
"
linear
"
:
J0x
=
(
J
[
i
,
j
,
0
]
+
J
[
i
,
j
,
2
])
/
2
J0y
=
(
J
[
i
,
j
,
1
]
+
J
[
i
,
j
,
3
])
/
2
J1x
=
(
J
[
i
,
j
,
0
]
-
J
[
i
,
j
,
2
])
/
dx
J2y
=
(
J
[
i
,
j
,
1
]
-
J
[
i
,
j
,
3
])
/
dy
I
[
slx
]
=
J0x
+
xc
[
sl
]
*
J1x
I
[
sly
]
=
J0y
+
yc
[
sl
]
*
J2y
elif
method
==
"
bilinear
"
:
# Bilinear polynomial hat functions at corner sites of cells.
# They are nonzero only on neighboring cells.
#
# On each of the edges, they are linear functions along the
# edge, and their average should coincide with the current
# perpendicular to the edge.
def
M
(
n
):
M
=
np
.
zeros
((
n
,
n
+
1
))
p
=
np
.
arange
(
n
)
M
[
p
,
p
]
=
1
/
2
M
[
p
,
p
+
1
]
=
1
/
2
return
M
I0
=
J
[:,
:,
0
]
I1
=
J
[:,
:,
1
]
I2
=
J
[:,
:,
2
]
I3
=
J
[:,
:,
3
]
# Solve corner values Iyc: (Iyc(i,j) + Iyc(i+1,j))/2 == I3(i,j)
r
=
np
.
empty
((
nx
,
ny
+
1
)
+
I0
.
shape
[
2
:],
dtype
=
I0
.
dtype
)
r
[:,
:
ny
]
=
I3
r
[:,
ny
]
=
I1
[:,
-
1
]
rp
=
r
.
reshape
(
nx
,
-
1
)
z
=
np
.
linalg
.
lstsq
(
M
(
nx
),
rp
,
rcond
=
None
)[
0
]
Iyt
=
z
.
reshape
(
nx
+
1
,
*
r
.
shape
[
1
:])
# Solve corner values Ixc: (Ixc(i,j) + Ixc(i,j+1))/2 == I2(i,j)
r
=
np
.
empty
((
nx
+
1
,
ny
)
+
I0
.
shape
[
2
:],
dtype
=
I0
.
dtype
)
r
[:
nx
,
:]
=
I2
r
[
nx
,
:]
=
I0
[
-
1
,
:]
rp
=
np
.
moveaxis
(
r
,
1
,
0
).
reshape
(
ny
,
-
1
)
z
=
np
.
linalg
.
lstsq
(
M
(
ny
),
rp
,
rcond
=
None
)[
0
]
Ixt
=
np
.
moveaxis
(
z
.
reshape
(
ny
+
1
,
*
((
nx
+
1
,)
+
rp
.
shape
[
2
:])),
0
,
1
)
# Interpolate with the bilinear hat functions
ax
=
0.5
-
xc
/
dx
bx
=
0.5
+
xc
/
dx
ay
=
0.5
-
yc
/
dy
by
=
0.5
+
yc
/
dy
I
[
slx
]
=
(
ax
*
ay
*
Ixt
[
i
,
j
]
+
bx
*
ay
*
Ixt
[
i
+
1
,
j
]
+
ax
*
by
*
Ixt
[
i
,
j
+
1
]
+
bx
*
by
*
Ixt
[
i
+
1
,
j
+
1
]
)
I
[
sly
]
=
(
ax
*
ay
*
Iyt
[
i
,
j
]
+
bx
*
ay
*
Iyt
[
i
+
1
,
j
]
+
ax
*
by
*
Iyt
[
i
,
j
+
1
]
+
bx
*
by
*
Iyt
[
i
+
1
,
j
+
1
]
)
else
:
raise
ValueError
(
f
"
Unknown
{
method
=
}
"
)
I
[
m
]
=
0
return
I
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment