Skip to content
Snippets Groups Projects
Commit 67e1e4d8 authored by ilsapolo's avatar ilsapolo
Browse files

Upload New File

parent 499fc713
No related branches found
No related tags found
No related merge requests found
% !TeX encoding = utf8
\documentclass{beamer}
\usepackage{beamerthemesplit} %% Activate for custom appearance
\usepackage{amsmath}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{graphicx}
\usepackage{textpos}
\usepackage{listings}
%\usepackage{minted}
% JYU COLORS
\usepackage{xcolor}
\definecolor{jyublue}{RGB/cmyk}{29, 61, 102 / 1.00, 0.71, 0.09, 0.56}
\definecolor{jyuorange}{RGB/cmyk}{221, 88, 61 / 0.00, 0.82, 0.80, 0.00}
\definecolor{jyugold}{RGB/cmyk}{190, 154, 84 / 0.08, 0.29, 0.66, 0.19}
\definecolor{jyusilver}{RGB/cmyk}{202, 202, 199 / 0.08, 0.05, 0.07, 0.16}
%\usepackage{tikz}
%\tikzset{
% jyutorch/.style={},
%jyuhandle/.style={fill=jyublue, draw=none},
%jyuflame/.style={fill=jyuorange, draw=none}}
%\newcommand \jyulogo{\input{jyulogo}}
% INNER THEMES
%\useinnertheme{rectangles}
\useinnertheme{circles}
%\useinnertheme{inmargin}
%\useinnertheme{rounded}
% OUTERTHEMES
\useoutertheme{infolines}
%\useoutertheme{miniframes}
%\useoutertheme{shadow}
%\useoutertheme{sidebar}
%\useoutertheme{smoothbars}
%\useoutertheme{smoothtree}
%\useoutertheme{split}
%\useoutertheme{tree}
%\usecolortheme{dove} % complete
%\usecolortheme{orchid} % inner
%\usecolortheme{whale} % outer
% THEME COLORS
\setbeamercolor{alerted text}{fg=jyugold}
\setbeamercolor{background canvas}{bg=white}
\setbeamercolor{block body alerted}{bg=jyusilver}
\setbeamercolor{block body}{bg=normal text.bg!90!jyublue}
\setbeamercolor{block body example}{bg=jyublue}
\setbeamercolor{block title alerted}{use={normal text,alerted text},fg=alerted text.fg!75!normal text.fg,bg=normal text.bg!75!jyusilver}
\setbeamercolor{block title}{bg=jyusilver}
\setbeamercolor{block title example}{use={normal text,example text},fg=example text.fg!75!normal text.fg,bg=normal text.bg!75!jyusilver}
\setbeamercolor{fine separation line}{}
\setbeamercolor{frametitle}{fg=white}
\setbeamercolor{item projected}{fg=white}
\setbeamercolor{normal text}{bg=white,fg=jyublue}
\setbeamercolor{palette sidebar primary}{use=normal text,fg=normal text.fg}
\setbeamercolor{palette sidebar quaternary}{use=structure,fg=structure.fg}
\setbeamercolor{palette sidebar secondary}{use=structure,fg=structure.fg}
\setbeamercolor{palette sidebar tertiary}{use=normal text,fg=normal text.fg}
\setbeamercolor{section in sidebar}{fg=brown}
\setbeamercolor{section in sidebar shaded}{fg=grey}
\setbeamercolor{separation line}{}
\setbeamercolor{sidebar}{bg=jyugold}
\setbeamercolor{sidebar}{parent=palette primary}
\setbeamercolor{structure}{bg=jyuorange, fg=jyublue}
\setbeamercolor{subsection in sidebar}{fg=jyublue}
\setbeamercolor{subsection in sidebar shaded}{fg=jyusilver}
\setbeamercolor{title}{fg=jyusilver}
\setbeamercolor{titlelike}{fg=jyusilver}
% FONTS
\usepackage{roboto}
\setbeamerfont{}{family=\roboto}
\usefonttheme[onlymath]{serif}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title{Introduction to the Processing}
\subtitle{Eigen- and singular values, decompostions and PCA}
\author[MSc. N.N. ]{\includegraphics[height=2cm,width=1cm]{torch_color.pdf}\\MSc. N.N. }
\institute[JYU]{University of Jyväskylä \\ Faculty of Information Technology}
\date{\today}
%\logo{\includegraphics[width=2cm]{logopolito}}
\begin{document}
\frame{\titlepage}
\addtobeamertemplate{frametitle}{}{%
\begin{textblock*}{100mm}(.95\textwidth,-1.1cm)
\includegraphics[height=0.9cm,width=0.45cm]{torch.png}
\end{textblock*}}
\section[Content]{}
\frame{\tableofcontents}
\section{Eigenvalue decomposition}
\frame
{
\frametitle{Eigenvalues}
\begin{block}{Definition: Eigenvalue and eigenvector}
Suppose matrix $A \in \mathbb{R}^{d \times d}$ is a symmetrical matrix. Thus $A^T = A$. $\lambda \in \mathbb{R}$ is called the \textbf{eigenvalue} of matrix $A \in \mathbf{R}^{d \times d}$, if there exists such a $u \neq 0$ that $Au = \lambda u$. Thus, $u$ is the \textbf{eigenvector} of $A$.
\end{block}
}
\frame
{
\frametitle{Eigenvalues}
To make the calculations easier to handle, let's mark
$$
U = [u_1, \dots, u_d] \in \mathbb{R}^{d \times d},
$$
$$
\Lambda = diag(\lambda_1,\dots,\lambda_2) =
\begin{bmatrix}
\lambda_1 & & 0\\
&\ddots & \\
0 & & \lambda_d
\end{bmatrix}
\in \mathbb{R}^{d \times d}
$$
}
\frame
{
\frametitle{Eigenvalue decomposition}
Now
$$
AU = U\Lambda,
$$
which gives us
$$
AUU^T = U\Lambda U^T
$$
As $U$ is in fact an orthogonal matrix, then $U^{-1} = U^T$, which means that $UU^T = UU^{-1} = I$, so the \textbf{eigendecomposition} of symmetrical matrix $A$ is
$$
A = U \Lambda U^T.
$$
}
\section{Principal component analysis}
\frame
{
\frametitle{Principal component analysis}
Principal component analysis (PCA) is the socket wrench of data analysts. It is the preferred method of getting started with new data. PCA goes by many names:
\begin{itemize}
\item Principal component analysis
\item Karhunen-Loève transform
\item Hotelling transform
\item Principal factor analysis
\end{itemize}
}
\section{Literature}
\frame
{
\frametitle{References}
\begin{thebibliography}{0}
\selectlanguage{english}
%\bibitem{manif}
%Michael Spivak, {\it Calculus on manifolds},
%Addison-Wesley, 1965.
%\bibitem{joy}
%M.D. Spivak, Ph.D., {\it The Joy of \TeX.
%A Gourmet Guide to Typesetting with the \AmS-\TeX\ macro package},
%American Mathematical Society, 1986.
\end{thebibliography}
}
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment