Skip to content
Snippets Groups Projects
Commit 6f0488a0 authored by mpotterf's avatar mpotterf
Browse files

moved management regimes to creation of final table

parent 3439326a
No related branches found
No related tags found
No related merge requests found
......@@ -24,12 +24,6 @@ inputFolder <- paste(path, "input_data", sep = "/")
outputFolder <- paste(path, "output", sep = "/")
### load some parameter
# Management regimes and their abbreviation, they are merged to the data by the branching group (script loadDB.R)
regime <- read.csv(paste0(path, "/params/regimes.csv"),
sep = ",",
stringsAsFactors = FALSE)
### Simulation variant that will be load
### The corresponding db files need to be stored in folder "input_data"
......@@ -65,36 +59,24 @@ regime <- read.csv(paste0(path, "/params/regimes.csv"),
# Select the variation
# !!! no needed if query based on the file name
#sim_variant <- "CC0_p_canesm"
sim_variant <- "without"
#sim_variant <- "without"
# Vector to keep all variants for future use:
all.variants <- c("CC45",
"CC85",
"without",
"CC45_p",
"CC85_p",
"CC26_p",
"CC0_p",
"CC45_p_canesm",
"CC85_p_canesm",
"CC26_p_canesm",
"CC0_p_canesm")
### Define the names of the databases (SIMO-output for 10 watersheds) that will be imported
# It is used in the skripts "structure_SIMO_rslDB_FBE.R" and "loadDB.R"
#db_names <- c(#"MV_Hartola",
#"MV_Kitee",
# "MV_Korsnas" #,
#"MV_Parikkala",
#"MV_Pori",
#"MV_Pyhtaa",
#"MV_Raasepori",
#"MV_Simo",
#"MV_Vaala",
#"MV_Voyri"
# )
#all.variants <- c("CC45",
# "CC85",
# "without",
# "CC45_p",
# "CC85_p",
# "CC26_p",
# "CC0_p",
# "CC45_p_canesm",
# "CC85_p_canesm",
# "CC26_p_canesm",
# "CC0_p_canesm")
# List all .db in 'input'
db_input <- list.files(inputFolder,
......@@ -105,46 +87,12 @@ db_input <- list.files(inputFolder,
db_names <- gsub(".db", "", db_input)
### Restructure the SQL database.
# The query creates a table called UNIT, which contains indicators over time and under management regimes
#
# !!! Only needed if the DB is loaded for the first time (this may take some time): "first_load = TRUE"
# !!! For the downloaded watershed data this is already done: "first_load = FALSE"
first_load = FALSE
if (sim_variant %in% all.variants ){
print("YES")
} else {
print("NO")
}
### the following lines do not need any changes ###
# If one of the follwing simulation variants is read ...
if(sim_variant %in% all.variants ) {
print("sim_varian is in all variants")
# Run the script with the SQL query for all management regimes
source(paste0(path, "/structure_SIMO_rslDB_FBE.R"))
} else {
print("!!!else")
# Otherwise, run the script witht the SQL query for Set aside without deadwood extraction (...SA)
# This needs a different SQL query, since the database does not contain harvest information
source(paste0(path, "/structure_SIMO_rslDB_SA.R")) # Query
}
###
### Import the restructured SIMO data (from UNIT table) in the R-environment
# It gives a single dataframe for each database named by "rsl_db_names.csv" AND an overall dataframe called "rslt_all.csv"
# Select columns that should be importat from the SQL table UNIT (created before by script structure_SIMO_rslDB)
# Identify columns from UNIT table to export to .cvs
# -----------------------------------------
# different columns are stored in stratum or in comp_unit
# if more variables are required, need to update the SQL
# created script 'structure_SIMO_rslDB.R'
# An overview on all available SIMO outcomes can be found under: params/Overview_outcomes_SIMO.xlsx
columns <- paste0("id,
......@@ -158,21 +106,91 @@ columns <- paste0("id,
V_total_deadwood,
BA,
V,
N,
SC,
N,
H_dom,
D_gm,
Harvested_V,
Biomass,
income_biomass,
CARBON_STORAGE")
CARBON_STORAGE,
MAIN_SP")
# If the _SA is included in the .db name
# use specific query
# Create the final CSV
# -------------------------
# CHeck for matching character string
# !!!!!! this needs to be fixed!
# what is the correct order of teh queries?
# need to include OPER2 & OPER3 in SA scenario???
# error: op_res.income - in SA and NO SA scenarios
# TRy to add THIN value to SA_scenario???
# NEED to fix final export of csv tables: simplify the output name!!!
# remove the 'simulated_'
#
for (name in db_names) {
print("Back in main!!")
# CHeck if the name contains "_SA" regime
# if YES - run SA query
# if NO - run normal query
if(grepl("_SA", name)){
print(name)
print("run SA query")
# This needs specific SQL, since the database does not contain harvest information
source(paste0(path, "/structure_SIMO_rslDB_SA.R"))
} else {
print(name)
print("run FBE query")
# Run the script with the SQL query for all management regimes besides SA
source(paste0(path, "/structure_SIMO_rslDB_FBE.R")) # Query
}
}
###
# Create the final CSV for each database
# ----------------------------------
source(paste(path, "loadDB.R", sep = "/"))
# If one of the follwing simulation variants is read ...
# if(sim_variant %in% all.variants ) {
# print("sim_varian is in all variants")
#
# # Run the script with the SQL query for all management regimes
# source(paste0(path, "/structure_SIMO_rslDB_FBE.R"))
#
#
# } else {
# # Otherwise, run the script witht the SQL query for Set aside without deadwood extraction (...SA)
# # This needs a different SQL query, since the database does not contain harvest information
# source(paste0(path, "/structure_SIMO_rslDB_SA.R")) # Query
# }
### !!! CSV files are stored unter output
#
# If data/columns have already been loaded and saved as csv file under ../output: csv_exist = TRUE
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment