# -*- coding:utf-8; eval: (blacken-mode) -*- """ Calculate anomalous current in bulk case """ import joblib import numpy as np from numpy import pi import matplotlib.pyplot as plt from scipy.linalg import expm import logging import contextlib import usadelndsoc from usadelndsoc.matsubara import get_matsubara_sum from usadelndsoc.solver import * from usadelndsoc.util import vectorize_parallel import collections mem = joblib.Memory("cache") def get_solver(soc_alpha, eta, phi, L=10, W=10, h=0.5, D=1.0, n=5): sol = Solver(nx=n, ny=n) sol.mask[...] = MASK_NONE sol.Lx = L sol.Ly = W sol.Omega[...] = 0 sol.Delta[0, :] = np.eye(2) * np.exp(1j * phi / 2) sol.Delta[-1, :] = np.eye(2) * np.exp(-1j * phi / 2) sol.mask[0, :] = MASK_TERMINAL sol.mask[-1, :] = MASK_TERMINAL sol.D = D sol.eta = eta nx, ny = sol.shape dx = sol.Lx / nx dy = sol.Ly / ny Ax = soc_alpha * np.kron(S_0, S_y) Ay = -soc_alpha * np.kron(S_0, S_x) sol.Ux[...] = expm(1j * dx * Ax) sol.Uy[...] = expm(1j * dy * Ay) sol.Omega[1:-1] += h * np.kron(S_z, S_y) return sol Res = collections.namedtuple("Res", ["x", "y", "J", "Jx", "Jy"]) @vectorize_parallel(returns_object=True, noarray=True) @usadelndsoc.with_log_level(logging.WARNING) def j(T, h, phi, n=15, eta=0.1, alpha_soc=0.1, L=10, W=2): sol = get_solver(soc_alpha=alpha_soc, eta=eta, L=L, W=W, n=n, phi=phi, h=h) E_typical = 10 + 10 * abs(T) w, a = get_matsubara_sum(T, E_typical) t3 = np.kron(S_z, S_0) res = sol.solve_many(omega=w) t3 = np.diag([1, 1, -1, -1]) J = tr(res.J @ t3) J = -1j * pi * (J * a[:, None, None, None]).sum(axis=0) Jx = (J[:, :, 0] + J[:, :, 2]).real / 2 Jy = (J[:, :, 1] + J[:, :, 3]).real / 2 return (sol.x, sol.y, J, Jx, Jy) def Gamma_to_alpha(Gamma_DP, Gamma_ST): r""" Transform from (Gamma_DP, Gamma_ST) to (alpha_soc, eta). .. math:: \Gamma_{DP} &= 2 \alpha^2 p_F^2 \tau \\ \Gamma_{ST} &= \Gamma_{DP} \frac{\alpha\tau}{\xi_0} and :math:`\xi_0^2 = D/(2\pi\Delta_0)`. The length unit is :math:`L_0 = \sqrt{D/E_0}` where :math:`E_0` is the energy unit. """ alpha_soc = (Gamma_DP / 4) ** 0.5 eta = Gamma_ST / (4 * np.sqrt(2 * pi) * alpha_soc**3) return alpha_soc, eta def do(W_xi=6, multin=False): T = 0.1 Gamma_DP = 10 Gamma_ST = 1 h = -10.0 phi = np.linspace(0, 2 * pi, 37) xi = 1 / np.sqrt(2 * pi) L = np.array([0.1, 1.5, 2, 3]) * xi W = W_xi * xi alpha, eta = Gamma_to_alpha(Gamma_DP, Gamma_ST) res = j( T, h, phi[None, :], alpha_soc=alpha, eta=eta, L=L[:, None], W=W, n=10, mem=mem ) if multin: mphi = phi[::2] res0 = j( T, h, mphi[None, :], alpha_soc=alpha, eta=eta, L=L[:, None], W=W, n=5, mem=mem, ) res1 = j( T, h, mphi[None, :], alpha_soc=alpha, eta=eta, L=L[:, None], W=W, n=20, mem=mem, ) Jx_mean = np.asarray( [Res(*x).Jx[1:-1].sum(axis=1).mean(axis=0) for x in res.flat] ).reshape(res.shape) if multin: Jx0_mean = np.asarray( [Res(*x).Jx[1:-1].sum(axis=1).mean(axis=0) for x in res0.flat] ).reshape(res0.shape) Jx1_mean = np.asarray( [Res(*x).Jx[1:-1].sum(axis=1).mean(axis=0) for x in res1.flat] ).reshape(res1.shape) fig, axs = plt.subplots(1, 2, layout="compressed") ax = axs[0] ax.plot(phi / pi, Jx_mean.T / abs(Jx_mean).max(axis=1)) if multin: ax.plot(mphi / pi, Jx0_mean.T / abs(Jx0_mean).max(axis=1), "k:", alpha=0.25) ax.plot(mphi / pi, Jx1_mean.T / abs(Jx1_mean).max(axis=1), "k:") ax.set_xlabel(r"$\varphi / \pi$") ax.set_ylabel(r"$I / I_{\mathrm{max}}$") ax.legend(L / xi, title=r"$L/\xi$", loc="lower right") def eff(Jx): Jm = Jx.min(axis=1) Jp = Jx.max(axis=1) return (abs(Jp) - abs(Jm)) / (abs(Jp) + abs(Jm)) ax = axs[1] ax.plot(L / xi, 100 * eff(Jx_mean)) if multin: ax.plot(L / xi, 100 * eff(Jx0_mean), "k:", alpha=0.25) ax.plot(L / xi, 100 * eff(Jx1_mean), "k:") ax.set_xlabel(r"$L / \xi$") ax.set_ylabel(r"$\eta$ [%]") fig.suptitle( rf"$W = {W/xi} \xi_0$ $\Gamma_{{DP}} = {Gamma_DP} \Delta_0$, $\Gamma_{{ST}} = {Gamma_ST} \Delta_0$ ($\tilde{{\eta}} = {eta:.3g}$, $\tilde{{\alpha}} = {alpha:.3g}$)" ) fig.savefig("cpr_sns.pdf") def main(): do() if __name__ == "__main__": main()