# -*- coding:utf-8; eval: (blacken-mode) -*- """ Calculate anomalous current in bulk case """ import joblib import numpy as np from numpy import pi import matplotlib.pyplot as plt from scipy.linalg import expm import logging import usadelndsoc from usadelndsoc.matsubara import get_matsubara_sum from usadelndsoc.solver import * from usadelndsoc.util import vectorize_parallel mem = joblib.Memory("cache") def get_solver(soc_alpha, eta, L=10, h=0.5, D=1.0, n=5): sol = Solver(nx=n, ny=n) sol.mask[...] = MASK_NONE sol.Lx = L sol.Ly = L sol.Omega[...] = 0 sol.Delta[:, :] = np.eye(2) sol.D = D sol.eta = eta nx, ny = sol.shape dx = sol.Lx / nx dy = sol.Ly / ny Ax = 2 * soc_alpha * np.kron(S_0, S_y) Ay = -2 * soc_alpha * np.kron(S_0, S_x) sol.Ux[...] = expm(1j * dx * Ax) sol.Uy[...] = expm(1j * dy * Ay) sol.Omega[...] += h * np.kron(S_z, S_x) return sol @vectorize_parallel(returns_object=True, noarray=True) def j_anom(T, h, n=5, alpha_soc=0.01, perturbative=False): usadelndsoc.logger.setLevel(logging.WARNING) # Solver without SOC if perturbative: sol0 = get_solver(soc_alpha=0, eta=0, h=h, n=n) # Solver for evaluating current perturbatively in SOC eta = 1.0 sol = get_solver(soc_alpha=alpha_soc, eta=eta, h=h, D=1.0, n=n) E_typical = 10 + 10 * T w, a = get_matsubara_sum(T, E_typical) t3 = np.kron(S_z, S_0) Phis = [] Fs = [] Gs = [] Js = [] Jans = [] dd = (sol.Lx / sol.shape[0], sol.Ly / sol.shape[1]) Jtot = 0 Jantot = 0 for ww, aa in zip(w, a): if perturbative: # Bulk solution without SOC field and S_H res = sol0.solve(omega=ww) else: # With SOC field and S_H res = sol.solve(omega=ww) # Evaluate current sol.omega = ww J = sol._core.grad_A(res.Phi.copy()).transpose(0, 1, 2, 4, 3) * (-1 / 16) J[:, :, LEFT] /= dd[1] # current density: divide by cell width J[:, :, UP] /= dd[0] J[:, :, RIGHT] /= dd[1] J[:, :, DOWN] /= dd[0] Jtot += 1j * pi * aa * J # Analytic gp = (ww - 1j * h) / np.sqrt((ww - 1j * h) ** 2 + 1) gm = (ww + 1j * h) / np.sqrt((ww + 1j * h) ** 2 + 1) fp = 1 / np.sqrt((ww - 1j * h) ** 2 + 1) fm = 1 / np.sqrt((ww + 1j * h) ** 2 + 1) # XXX: check the 8*eta Jy_an = (gp - gm) * (1 + gp * gm + fp * fm) * (-1j * alpha_soc**3) * (8 * eta) Jantot += pi * aa * Jy_an return Jtot, Jantot def main(): T = 0.02 alpha_soc = 0.05 Da2 = alpha_soc**2 h = np.linspace(0, 1.75, 79) res = j_anom(T, h, n=20, alpha_soc=alpha_soc, perturbative=False, mem=mem) j = np.asarray([x[0] for x in res]) j_an = np.asarray([x[1] for x in res]) t3 = np.diag([1, 1, -1, -1]) j = tr(j @ t3)[:, 2, 2, UP] plt.plot(h, -j.real, "-", label=r"numerics") plt.plot(h, -j_an.real, "--", label=r"analytic") plt.title(rf"$T = {T} \Delta$, $D\alpha^2 = {Da2:.4} \Delta$") plt.xlabel(r"$h/\Delta$") plt.ylabel(r"$j_{\mathrm{an}}$") plt.legend() plt.savefig("bulk_j_an.pdf") if __name__ == "__main__": main()