# -*- coding:utf-8; eval: (blacken-mode) -*- import os import pytest import numpy as np from numpy.testing import assert_allclose from numpy import pi from scipy.special import zeta from scipy.linalg import expm from usadelndsoc.solver import * from usadelndsoc.bcs import BCS_Delta from usadelndsoc.matsubara import get_matsubara_sum try: import usadel1 except ImportError: usadel1 = None def example_sns_1d(phi, L, nx=500, ny=1, Delta0=1.0, eta=0.0): solver = Solver(nx=nx, ny=ny) solver.mask[...] = MASK_NONE solver.mask[0, :] = MASK_TERMINAL solver.mask[-1, :] = MASK_TERMINAL solver.Lx = L solver.Ly = L solver.eta = eta solver.Omega[...] = 0 solver.Delta[0, :] = Delta0 * np.exp(-1j * phi / 2) * np.eye(2) solver.Delta[-1, :] = Delta0 * np.exp(+1j * phi / 2) * np.eye(2) return solver def test_example_sns_1d(): # Test against analytic solution omega = 30 Lx = 10 phi = pi / 2 sol = example_sns_1d(phi, Lx) res = sol.solve(omega=omega) x = np.linspace(0, Lx, sol.shape[0]) theta0 = np.arctan(1 / omega) theta_a = 4 * np.arctan(np.exp(-np.sqrt(2 * omega) * x) * np.tan(theta0 / 4)) theta_b = 4 * np.arctan(np.exp(-np.sqrt(2 * omega) * (Lx - x)) * np.tan(theta0 / 4)) F = np.sin(theta_a) * np.exp(-1j * phi / 2) + np.sin(theta_b) * np.exp(1j * phi / 2) rF = res.F[:, :, 0, 0] assert_allclose(rF.squeeze(), F, rtol=0, atol=5e-3 * abs(F).max()) @pytest.mark.skipif(usadel1 is None, reason="usadel1 not installed") def test_example_sns_1d_J_usadel1(): Lx = 10 phi = pi / 2 sol = example_sns_1d(phi, Lx) sol.Ly = 1 T = 0.2 Delta, I0, _, success = sol.self_consistency(T=T, T_c0=0, tol=1e-10) tau3 = np.diag([1, 1, -1, -1]) I0 = tr(I0[:-1, 0, 0] @ tau3) I0_mean = I0[1:-1].real.mean() # Current is real-valued and conserved assert_allclose(I0.imag, 0, atol=1e-8) assert_allclose(I0[1:-1].real, I0_mean, rtol=1e-5) # Compare to Usadel1 g = usadel1.Geometry(1, 2) g.t_type = [usadel1.NODE_CLEAN_S_TERMINAL, usadel1.NODE_CLEAN_S_TERMINAL] g.w_type = usadel1.WIRE_TYPE_N g.w_ends[0, :] = [0, 1] g.w_length = Lx g.w_conductance = 1 g.t_delta = [1, 1] g.t_phase = [-phi / 2, phi / 2] g.t_t = T g.t_mu = 0 s = usadel1.CurrentSolver(g, maxE=4, ne=2000) s.solve() I1, _ = s.get_currents() I1_mean = I1.mean() assert_allclose(I0_mean, I1_mean, rtol=1e-3) @pytest.mark.skipif(usadel1 is None, reason="usadel1 not installed") def test_example_sss_1d_J_usadel1(): Lx = 10 phi = pi / 2 sol = example_sns_1d(phi, 30 * Lx / (30 - 2), nx=30) sol.Ly = 1 T_c0 = np.exp(np.euler_gamma) / np.pi T = 0.2 Delta, I0, _, success = sol.self_consistency(T=T, T_c0=T_c0, workers=1) tau3 = np.diag([1, 1, -1, -1]) I0 = tr(I0[:-1, 0, 0] @ tau3) I0_mean = I0.real.mean() # Current is real-valued and conserved assert_allclose(I0.imag, 0, atol=1e-8) assert_allclose(I0.real, I0_mean, rtol=5e-3) # Compare to Usadel1 g = usadel1.Geometry(1, 2) g.t_type = [usadel1.NODE_CLEAN_S_TERMINAL, usadel1.NODE_CLEAN_S_TERMINAL] g.w_type = usadel1.WIRE_TYPE_S g.w_ends[0, :] = [0, 1] g.w_delta = 1.0 g.w_phase = np.linspace(-phi / 2, phi / 2, len(g.x)) g.w_length = Lx g.w_conductance = 1 g.t_delta = [1, 1] g.t_phase = [-phi / 2, phi / 2] g.t_t = T g.t_mu = 0 g.omega_D = 100 g.coupling_lambda = 1 / np.arccosh(g.omega_D / 1.0) for k, d, v in usadel1.self_consistent_matsubara_iteration(g): if d.relative_residual_norm() < 1e-6: break s = usadel1.CurrentSolver(g, ne=2000) s.solve() I1, _ = s.get_currents() I1_mean = I1.mean() assert_allclose(I0_mean, I1_mean, rtol=5e-2) OMEGAS = [30, 5, (0.3 + 0.001j) / 1j] @pytest.mark.skipif(usadel1 is None, reason="usadel1 not installed") @pytest.mark.parametrize("omega", OMEGAS) def test_example_sns_usadel1(omega): # Test against another numerical solution Lx = 10 phi = pi / 2 sol = example_sns_1d(phi, Lx) res = sol.solve(omega=omega) g = usadel1.Geometry(1, 2) g.t_type = [usadel1.NODE_CLEAN_S_TERMINAL, usadel1.NODE_CLEAN_S_TERMINAL] g.w_type = usadel1.WIRE_TYPE_N g.w_ends[0, :] = [0, 1] g.w_length = Lx g.w_conductance = 1 g.t_delta = [1, 1] g.t_phase = [-phi / 2, phi / 2] g.t_t = 1 g.t_mu = 0 s = usadel1.Solver() s.set_geometry(g) x_scl = np.linspace(0, 1, sol.shape[0]) res2 = s.sp_solve(np.array([1j * omega]), x_scl) F2 = 2j * res2.a / (1 - res2.a * res2.b) F2c = 2j * res2.b / (1 - res2.a * res2.b) assert_allclose( res.F[..., 0, 0].squeeze(), F2.squeeze(), rtol=1e-2, atol=1e-3 * abs(F2).max() ) assert_allclose( res.Fc[..., 0, 0].squeeze(), F2c.squeeze(), rtol=1e-2, atol=1e-3 * abs(F2c).max(), ) @pytest.mark.slow @pytest.mark.parametrize("T", [0.28, 0.53, 0.8]) def test_selfcons_kupriyanov(request, T): fns_k = { 0.28: "kupriyanov1981-cpr-a1.dat", 0.53: "kupriyanov1981-cpr-a2.dat", 0.8: "kupriyanov1981-cpr-a3.dat", } fns_u = { 0.28: "L3.989_T0.28_TcR1_TcW1_gamma1e-06_r0_ns7.dat", 0.53: "L3.989_T0.53_TcR1_TcW1_gamma1e-06_r0_ns7.dat", 0.8: "L3.989_T0.8_TcR1_TcW1_gamma1e-06_r0_ns7.dat", } fn_k = os.path.join(os.path.dirname(__file__), "data", fns_k[T]) fn_u = os.path.join(os.path.dirname(__file__), "data", fns_u[T]) L = 3.989 Tc0 = 1.0 Delta0 = BCS_Delta(T, Tc0) Delta00 = BCS_Delta(0.05, Tc0) # L is the distance between terminals, but Lx the system size where # the two outermost layers are terminals nx = 40 Lp = (L / (nx - 2)) * nx sol = example_sns_1d(0, Lp, nx=nx, ny=1, Delta0=Delta0) sol.Ly = 1 phase_mask = (sol.mask == MASK_TERMINAL) & (sol.x[:, None] > 0) dn = request.config.cache.makedir("test_selfcons_kupriyanov") cache_fn = os.path.join(dn, f"T-{T}.npz") res = cpr( sol, T=T, T_c0=Tc0, phase_mask=phase_mask, filename=cache_fn, workers=1, ds=0.4, ) phis, Deltas, Js = res tau3 = np.diag([1, 1, -1, -1]) Js = tr(Js @ tau3) Is = Js[:, :-1, 0, 0].squeeze().mean(axis=1) m = ~np.isnan(Is) Is = Is[m] phis = phis[m] phis_k, Is_k = np.loadtxt(fn_k).T phis_u, Is_u = np.loadtxt(fn_u).T Is_k *= Delta00 / L Imax = abs(Is_u).max() assert curve_separation(phis, Is, phis_u, Is_u) < 0.075 * Imax assert curve_separation(phis, Is, phis_k, Is_k) < 0.11 * Imax def curve_separation(x1, y1, x2, y2): # Resample k1 = np.arange(len(x1)) k1p = np.linspace(k1[0], k1[-1], 2000) k2 = np.arange(len(x2)) k2p = np.linspace(k2[0], k2[-1], 2000) x1 = np.interp(k1p, k1, x1) y1 = np.interp(k1p, k1, y1) x2 = np.interp(k2p, k2, x2) y2 = np.interp(k2p, k2, y2) # Min-max separation s = np.hypot(abs(x1[:, None] - x2[None, :]), abs(y1[:, None] - y2[None, :])) return s.min(axis=1).max() @pytest.mark.parametrize( "T,n,alpha_soc", [(0.1, 10, 0.01), (0.4, 10, 0.01), (0.4, 5, 0.0123)] ) def test_soc_analytic(T, n, alpha_soc): sx = np.array([[0, 1], [1, 0]]) sy = np.array([[0, -1j], [1j, 0]]) sz = np.array([[1, 0], [0, -1]]) s0 = np.array([[1, 0], [0, 1]]) def get_sol(soc_alpha, eta, L=10, h=0.5, D=1.0): sol = Solver(nx=n, ny=n) sol.mask[...] = MASK_NONE sol.Lx = L sol.Ly = L sol.Omega[...] = 0 sol.Delta[:, :] = np.eye(2) sol.D = D sol.eta = eta nx, ny = sol.shape dx = sol.Lx / nx dy = sol.Ly / ny Ax = 2 * soc_alpha * np.kron(s0, sy) Ay = -2 * soc_alpha * np.kron(s0, sx) sol.Ux[...] = expm(1j * dx * Ax) sol.Uy[...] = expm(1j * dy * Ay) sol.Omega[...] += h * np.kron(sz, sx) return sol # Solver without SOC h = 0.5 sol0 = get_sol(soc_alpha=0, eta=0, h=h) # Solver for evaluating current perturbatively in SOC eta = 1.0 sol = get_sol(soc_alpha=alpha_soc, eta=eta, h=h, D=0) E_typical = 10 + 10 * T w, a = get_matsubara_sum(T, E_typical) t3 = np.kron(sz, s0) Phis = [] Fs = [] Gs = [] Js = [] Jans = [] dd = (sol.Lx / sol.shape[0], sol.Ly / sol.shape[1]) Jtot = 0 Jantot = 0 for ww, aa in zip(w, a): res0 = sol0.solve(omega=ww) sol.omega = ww J = sol._core.grad_A(res0.Phi.copy()).transpose(0, 1, 2, 4, 3) * (1 / 16) Jtot += -1j * pi * aa * J gp = (ww - 1j * h) / np.sqrt((ww - 1j * h) ** 2 + 1) gm = (ww + 1j * h) / np.sqrt((ww + 1j * h) ** 2 + 1) fp = 1 / np.sqrt((ww - 1j * h) ** 2 + 1) fm = 1 / np.sqrt((ww + 1j * h) ** 2 + 1) # XXX: check the 8*eta Jy_an = (gp - gm) * (1 + gp * gm + fp * fm) * (-1j * alpha_soc**3) * (8 * eta) Jy_an *= dd[1] # multiply current density by the width of a single cell Jantot += pi * aa * Jy_an Jy = -1j * tr(J @ t3)[n // 2, n // 2, 1] assert_allclose(Jy, Jy_an, rtol=1e-2) Fs.append(res0.F.copy()) Gs.append(res0.G.copy()) Phis.append(res0.Phi.copy()) Js.append(J) Jans.append(Jy_an) def test_selfcons_h(): T = 0.4 h = 0.5 solver = Solver(nx=5, ny=2) solver.mask[...] = MASK_NONE solver.Lx = 5 solver.Ly = 5 solver.eta = 0 solver.Delta[...] = 1.0 solver.Omega[...] += h * np.kron(S_z, S_y) T_c0 = np.exp(np.euler_gamma) / np.pi Delta, I0, _, success = solver.self_consistency(T=T, T_c0=T_c0, workers=1) Delta0 = BCS_Delta(T, T_c0, h=h) Deltam = np.broadcast_to((Delta0 * S_0)[None, None, :, :], Delta.shape) assert_allclose(Delta.copy(), Deltam, rtol=1e-3)