From b51b2de4ef1cd1ce4d63bfc908b993d6cbef6f71 Mon Sep 17 00:00:00 2001 From: Pauli Virtanen <pauli.t.virtanen@jyu.fi> Date: Tue, 23 Apr 2024 13:49:39 +0300 Subject: [PATCH] Add Sphinx --- doc/conf.py | 11 ++ doc/discretization.md | 249 ------------------------------- doc/discretization.rst | 293 +++++++++++++++++++++++++++++++++++++ doc/index.rst | 20 +++ doc/pandoc/convert.sh | 8 - doc/pandoc/fix-links.lua | 44 ------ doc/pandoc/gitlab-math.lua | 18 --- meson.build | 2 +- usadelndsoc/meson.build | 2 +- 9 files changed, 326 insertions(+), 321 deletions(-) create mode 100644 doc/conf.py delete mode 100644 doc/discretization.md create mode 100644 doc/discretization.rst create mode 100644 doc/index.rst delete mode 100755 doc/pandoc/convert.sh delete mode 100644 doc/pandoc/fix-links.lua delete mode 100644 doc/pandoc/gitlab-math.lua diff --git a/doc/conf.py b/doc/conf.py new file mode 100644 index 0000000..e918f68 --- /dev/null +++ b/doc/conf.py @@ -0,0 +1,11 @@ +project = 'usadelndsoc' +copyright = '2024, Pauli Virtanen' +author = 'Pauli Virtanen' +release = '0.1' + +extensions = [] +#templates_path = ['_templates'] +exclude_patterns = ['_build', 'Thumbs.db', '.DS_Store'] + +html_theme = 'alabaster' +#html_static_path = ['_static'] diff --git a/doc/discretization.md b/doc/discretization.md deleted file mode 100644 index cee8b0d..0000000 --- a/doc/discretization.md +++ /dev/null @@ -1,249 +0,0 @@ -# Gauge-invariant discretization - -We do the discretization of the Usadel equation as follows. We first -discretize the action $`S`$. The discrete saddle-point equation or expressions -for currents are not derived analytically, but instead obtained from the computer -implementation of the action via automatic differentiation (AD). -This simplifies things somewhat, because proper handling of the gauge fields is -simpler to do in the action formulation. - -The action is -```math - S[Q] = \frac{i\pi\nu}{8} \mathrm{Tr}[D(\hat{\nabla}Q)^2 + \eta F_{ij}Q\hat{\nabla}_iQ\hat{\nabla}_jQ + 4 i \Omega Q] - \,, -``` -where $`\hat{\nabla}_j Q = \partial_j Q - i[\mathcal{A}_j, Q]`$ -and $`\Omega = \epsilon\tau_3 + i\Delta`$, $`\Delta^\dagger = \Delta`$. -We'd like the discretized functional to be also gauge invariant. - -We subdivide the space to cells, centered on a rectangular lattice -$`\vec{r}_j=(h j_x, h j_y, h j_z)`$ with $`j_{x,y,z}\in\mathbb{Z}`$ -and *h* are the lattice spacings. See the figure below: - - - -We choose $`Q(j) = Q(\vec{r}_j)`$ to be values of $`Q`$ at the lattice -sites. We define the Wilson link matrices $`U_{ij} =U_{ji}^{-1} -=U(\vec{r}_{i},\vec{r}_{j}) = -\mathrm{Pexp}[i\int_{L(\vec{r}_i,\vec{r}_j)}d\vec{r}'\,\cdot\vec{\mathcal{A}}(\vec{r}')]`$ -where $`L(\vec{r}_i,\vec{r}_j)`$ is straight line from $`\vec{r}_j`$ -to $`\vec{r}_i`$ and $`\mathrm{Pexp}`$ is the path-ordered integral. -Since the gauge field $`\vec{\mathcal{A}}`$ is fixed, the link -matrices can be computed ahead of time. - -We want a discretized theory that is invariant under the discrete gauge transformation -```math -Q(j) \mapsto u(j) Q u(j)^{-1} \,, -``` -and -```math - U_{ij} - \mapsto - u(i)U_{ij}u(j)^{-1} - \,, -``` -and in the continuum limit reduces to the original theory. Such -discretization has the advantage of being insensitive to the gauge -choice, and having exact discrete conservation laws associated with -the symmetry. - -## Derivative term - -We discretize the derivatives a -```math - D_{ij} - := - \frac{1}{h}[Q(i) U_{ij} - U_{ij} Q(j)] - \,, - \qquad - \Rightarrow - Q(i) D_{ij} = - D_{ij} Q(j) - \,, -``` -which satisfies an anticommutation relation analogous to continuum derivative. - -We then discretize -```math -S_2 -= -\mathrm{Tr} D(\hat{\nabla} Q)^2 -\mapsto --D \frac{2d}{|\mathrm{neigh}|} h^d \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr} D_{ij} D_{ji} -``` -where $`d`$ is the space dimension and `|neigh|` the number of neighbors on the grid. - -Expanding in small $`h`$ we have -```math -S_2 -\simeq -\frac{h^{d}d}{|\mathrm{neigh}|} -\sum_{i}\sum_{j\in{}\mathrm{neigh}(i)}\mathrm{Tr}\Bigl(\frac{Q(i) - Q(j)}{h} - [i\mathcal{A}(\frac{\vec{r}_i+\vec{r}_j}{2}), Q(j)]\Bigr)^2 -\,, -``` -which verifies the reduction to the continuum limit. - -## Field strength - -The link matrices have the usual continuum limit expansion -```math -U_{ji} -= -\sum_{n=0}^\infty i^n |\vec{r}_i-\vec{r}_j|^n \int_{-1/2}^{1/2}ds_1\int_{-1/2}^{s_1}ds_2\ldots\int_{-1/2}^{s_{n-1}}ds_n\, \mathcal{A}(s_1)\cdots\mathcal{A}(s_n) -``` -where $`\mathcal{A}(s)=\mathcal{A}[(\frac{1}{2} - s)\vec{r}_i + (\frac{1}{2} + s)\vec{r}_j]`$. - -As well known in lattice QCD, the field strength can be expressed in -terms of the link matrices $`U`$ via a plaquette loop. Consider then -the plaquette (see Fig. 1), with edges $`j\leftarrow{}i`$ and $`k\leftarrow{}l`$ in -direction $`\mu`$ and $`l\leftarrow{}i`$, $`k\leftarrow{}j`$ in direction $`\nu`$, and expand around -$`\vec{r}_0=\frac{\vec{r}_i+\vec{r}_j+\vec{r}_k+\vec{r}_l}{4}`$: -```math - P_{lkji} - = - U_{il}U_{lk}U_{kj}U_{ji} - \,, -``` -```math - \Rightarrow - P_{lkji} - \simeq - 1 - - i h^2 - \bigl( - \partial_\mu \mathcal{A}_\nu - \partial_\nu \mathcal{A}_\mu - i[\mathcal{A}_\mu,\mathcal{A}_\nu] - \bigr) - + - \mathcal{O}(h^3) - = - 1 - + i h^2 F_{\mu \nu}(\vec{r}_0) - + - \mathcal{O}(h^3) -``` -which then allows expressing $`F_{ij}`$ in terms of the link matrices. - -## Hall term - -In the plaquette of Fig. 1 we have -```math - \mathrm{tr} - F_{\mu\nu}Q \hat{\nabla}_\mu Q \hat{\nabla}_\nu Q - \rvert_{\mu=ji, \nu=li} - \simeq - \frac{i}{h^4} - \mathrm{tr} - (1 - P_{lkji}) U_{ij} D_{ji} Q(i) D_{il} U_{li} -``` -```math - = - \frac{-i}{h^4} - \mathrm{tr} - (U_{lk} U_{kj} - U_{li} U_{ij}) D_{ji} Q(i) D_{il} -``` -So the structure is $`\frac{-i}{h^4}`$ $`\times`$ (gauge factors for -counterclockwise loop $`-`$ return back clockwise) $`\times`$ $`DQD`$ for -three sites in counterclockwise order. Since only $`Q(i)`$, $`Q(j)`$, -$`Q(l)`$ appear here, one can also think of this as a plaquette corner -with $`Q(i)`$ being the corner. - -To do the sum over the $`\mu`$, $`\nu`$ indices, one can average over -corners of the plaquettes as follows, which gives the final discretization -of the Hall term: -```math - S_H - = - \eta - \mathrm{Tr} F_{\mu\nu}Q\hat{\nabla}_\mu Q\hat{\nabla}_\nu Q -``` -```math - S_H - \mapsto - \eta - \frac{h^d d}{4ih^4} - \sum_{\mathrm{plaqc}(ijkl; i)} - \mathrm{Tr} - \Bigl( - (U_{lk} U_{kj} - U_{li} U_{ij}) D_{ji} Q(i) D_{il} - \Bigr) -``` -```math - S_H - = - \frac{\eta h^{d-4} d}{4i} - \sum_{\mathrm{plaqc}(i; jkl)} - \mathrm{Tr} - \Bigl( - (P_{lkji} - 1)(Q(i) - U_{ij} Q(j) U_{ji} Q(i) U_{il} Q(l) U_{li}) - \Bigr) - \,, -``` -where $`\mathrm{plaqc}(i;jkl)`$ are the plaquette corners. The last line -follows with direct calculation, and considering the cyclic -permutations. - -## Matrix current - -We can also calculate the matrix current $`j\mapsto{}i`$ between neighboring cells: -```math - J_{ij}^a - = - \frac{\partial}{\partial\xi} - S[ - U_{ij} - \mapsto - U_{ij} - + - T^a U_{ij}\xi - \,, - \; - U_{ji} - \mapsto - U_{ji} - - - U_{ji} T^a \xi - ]\rvert_{\xi=0} -``` -where $`T^a`$ is an appropriate matrix generator, and the transformation -is inserted to only one of the links. - -The local gauge invariance now implies that there is an exact discrete -continuity equation -```math - \sum_{j\in{}N_i} J_{ij}^a - = - \frac{\partial}{\partial\xi} - S[Q(i)\mapsto{}e^{\xi T^a}Q(i)e^{-\xi T^a}]\rvert_{\xi=0} - = - \frac{\partial}{\partial\xi} - S[\Omega(i)\mapsto{}e^{-\xi T^a}\Omega(i)e^{\xi T^a}]\rvert_{\xi=0} - = - R_{i}^a - \,. -``` -This is one main advantage of the procedure, in addition to its -invariance vs. gauge fixing. - -However, the definition of the matrix current is *asymmetric*, so -that $`J_{ij}\ne{}-J_{ji}`$ as they differ by a quantity of order -$`\mathcal{O}(h^2)`$. The asymmetry arises when $`T^a`$ does not commute -with $`U_{ij}`$, so it is an issue only for the SU(2) component. The -problem is only in the interpretation. - -The currents measured at sites *i* and *j* are different: since -the parallel transport of spin between these two locations can imply -rotation due to the gauge field, there's no reason why we should have -$`J_{ij}=-J_{ji}`$, except in the continuum limit where the two points -become close to each other. - - -## Implementation - -The above is sufficient for numerical implementation: it is not -necessary to find out the saddle point equation symbolically. It can -be deduced by parametrizing first so that $`Q^2=1`$ and then using -automatic differentiation (AD). Only a routine evaluating the value of -the action is then needed, in terms of the AD dual variables. - -When looking for the saddle point in equilibrium, the problem becomes -even simpler; *Q* has then additional restrictions, and we are looking -for the minimum of the free energy *S*. diff --git a/doc/discretization.rst b/doc/discretization.rst new file mode 100644 index 0000000..2b5a5ef --- /dev/null +++ b/doc/discretization.rst @@ -0,0 +1,293 @@ +Gauge-invariant discretization +============================== + +We do the discretization of the Usadel equation as follows. We first +discretize the action :math:`S`. The discrete saddle-point equation or +expressions for currents are not derived analytically, but instead +obtained from the computer implementation of the action via automatic +differentiation (AD). This simplifies things somewhat, because proper +handling of the gauge fields is simpler to do in the action formulation. + +The action is + +.. math:: + + S[Q] = \frac{i\pi\nu}{8} \mathrm{Tr}[D(\hat{\nabla}Q)^2 + \eta F_{ij}Q\hat{\nabla}_iQ\hat{\nabla}_jQ + 4 i \Omega Q] + \,, + +where :math:`\hat{\nabla}_j Q = \partial_j Q - i[\mathcal{A}_j, Q]` and +:math:`\Omega = \epsilon\tau_3 + i\Delta`, +:math:`\Delta^\dagger = \Delta`. We’d like the discretized functional to +be also gauge invariant. + +We subdivide the space to cells, centered on a rectangular lattice +:math:`\vec{r}_j=(h j_x, h j_y, h j_z)` with +:math:`j_{x,y,z}\in\mathbb{Z}` and *h* are the lattice spacings. See the +figure below: + +.. figure:: img/discretization.svg + :alt: FIG 1. Lattice discretization. + + FIG 1. Lattice discretization + +We choose :math:`Q(j) = Q(\vec{r}_j)` to be values of :math:`Q` at the +lattice sites. We define the Wilson link matrices +:math:`U_{ij} =U_{ji}^{-1} =U(\vec{r}_{i},\vec{r}_{j}) = \mathrm{Pexp}[i\int_{L(\vec{r}_i,\vec{r}_j)}d\vec{r}'\,\cdot\vec{\mathcal{A}}(\vec{r}')]` +where :math:`L(\vec{r}_i,\vec{r}_j)` is straight line from +:math:`\vec{r}_j` to :math:`\vec{r}_i` and :math:`\mathrm{Pexp}` is the +path-ordered integral. Since the gauge field :math:`\vec{\mathcal{A}}` +is fixed, the link matrices can be computed ahead of time. + +We want a discretized theory that is invariant under the discrete gauge +transformation + +.. math:: Q(j) \mapsto u(j) Q u(j)^{-1} \,, + +and + +.. math:: + + U_{ij} + \mapsto + u(i)U_{ij}u(j)^{-1} + \,, + +and in the continuum limit reduces to the original theory. Such +discretization has the advantage of being insensitive to the gauge +choice, and having exact discrete conservation laws associated with the +symmetry. + +Derivative term +--------------- + +We discretize the derivatives a + +.. math:: + + D_{ij} + := + \frac{1}{h}[Q(i) U_{ij} - U_{ij} Q(j)] + \,, + \qquad + \Rightarrow + Q(i) D_{ij} = - D_{ij} Q(j) + \,, + +which satisfies an anticommutation relation analogous to continuum +derivative. + +We then discretize + +.. math:: + + S_2 + = + \mathrm{Tr} D(\hat{\nabla} Q)^2 + \mapsto + -D \frac{2d}{|\mathrm{neigh}|} h^d \sum_{\mathrm{neigh}(i,j)}\mathrm{Tr} D_{ij} D_{ji} + +where :math:`d` is the space dimension and ``|neigh|`` the number of +neighbors on the grid. + +Expanding in small :math:`h` we have + +.. math:: + + S_2 + \simeq + \frac{h^{d}d}{|\mathrm{neigh}|} + \sum_{i}\sum_{j\in{}\mathrm{neigh}(i)}\mathrm{Tr}\Bigl(\frac{Q(i) - Q(j)}{h} - [i\mathcal{A}(\frac{\vec{r}_i+\vec{r}_j}{2}), Q(j)]\Bigr)^2 + \,, + +which verifies the reduction to the continuum limit. + +Field strength +-------------- + +The link matrices have the usual continuum limit expansion + +.. math:: + + U_{ji} + = + \sum_{n=0}^\infty i^n |\vec{r}_i-\vec{r}_j|^n \int_{-1/2}^{1/2}ds_1\int_{-1/2}^{s_1}ds_2\ldots\int_{-1/2}^{s_{n-1}}ds_n\, \mathcal{A}(s_1)\cdots\mathcal{A}(s_n) + +where +:math:`\mathcal{A}(s)=\mathcal{A}[(\frac{1}{2} - s)\vec{r}_i + (\frac{1}{2} + s)\vec{r}_j]`. + +As well known in lattice QCD, the field strength can be expressed in +terms of the link matrices :math:`U` via a plaquette loop. Consider then +the plaquette (see Fig. 1), with edges :math:`j\leftarrow{}i` and +:math:`k\leftarrow{}l` in direction :math:`\mu` and +:math:`l\leftarrow{}i`, :math:`k\leftarrow{}j` in direction :math:`\nu`, +and expand around +:math:`\vec{r}_0=\frac{\vec{r}_i+\vec{r}_j+\vec{r}_k+\vec{r}_l}{4}`: + +.. math:: + + P_{lkji} + = + U_{il}U_{lk}U_{kj}U_{ji} + \,, + +.. math:: + + \Rightarrow + P_{lkji} + \simeq + 1 + - i h^2 + \bigl( + \partial_\mu \mathcal{A}_\nu - \partial_\nu \mathcal{A}_\mu - i[\mathcal{A}_\mu,\mathcal{A}_\nu] + \bigr) + + + \mathcal{O}(h^3) + = + 1 + + i h^2 F_{\mu \nu}(\vec{r}_0) + + + \mathcal{O}(h^3) + +which then allows expressing :math:`F_{ij}` in terms of the link +matrices. + +Hall term +--------- + +In the plaquette of Fig. 1 we have + +.. math:: + + \mathrm{tr} + F_{\mu\nu}Q \hat{\nabla}_\mu Q \hat{\nabla}_\nu Q + \rvert_{\mu=ji, \nu=li} + \simeq + \frac{i}{h^4} + \mathrm{tr} + (1 - P_{lkji}) U_{ij} D_{ji} Q(i) D_{il} U_{li} + +.. math:: + + = + \frac{-i}{h^4} + \mathrm{tr} + (U_{lk} U_{kj} - U_{li} U_{ij}) D_{ji} Q(i) D_{il} + +So the structure is :math:`\frac{-i}{h^4}` :math:`\times` (gauge factors +for counterclockwise loop :math:`-` return back clockwise) +:math:`\times` :math:`DQD` for three sites in counterclockwise order. +Since only :math:`Q(i)`, :math:`Q(j)`, :math:`Q(l)` appear here, one can +also think of this as a plaquette corner with :math:`Q(i)` being the +corner. + +To do the sum over the :math:`\mu`, :math:`\nu` indices, one can average +over corners of the plaquettes as follows, which gives the final +discretization of the Hall term: + +.. math:: + + S_H + = + \eta + \mathrm{Tr} F_{\mu\nu}Q\hat{\nabla}_\mu Q\hat{\nabla}_\nu Q + +.. math:: + + S_H + \mapsto + \eta + \frac{h^d d}{4ih^4} + \sum_{\mathrm{plaqc}(ijkl; i)} + \mathrm{Tr} + \Bigl( + (U_{lk} U_{kj} - U_{li} U_{ij}) D_{ji} Q(i) D_{il} + \Bigr) + +.. math:: + + S_H + = + \frac{\eta h^{d-4} d}{4i} + \sum_{\mathrm{plaqc}(i; jkl)} + \mathrm{Tr} + \Bigl( + (P_{lkji} - 1)(Q(i) - U_{ij} Q(j) U_{ji} Q(i) U_{il} Q(l) U_{li}) + \Bigr) + \,, + +where :math:`\mathrm{plaqc}(i;jkl)` are the plaquette corners. The last +line follows with direct calculation, and considering the cyclic +permutations. + +Matrix current +-------------- + +We can also calculate the matrix current :math:`j\mapsto{}i` between +neighboring cells: + +.. math:: + + J_{ij}^a + = + \frac{\partial}{\partial\xi} + S[ + U_{ij} + \mapsto + U_{ij} + + + T^a U_{ij}\xi + \,, + \; + U_{ji} + \mapsto + U_{ji} + - + U_{ji} T^a \xi + ]\rvert_{\xi=0} + +where :math:`T^a` is an appropriate matrix generator, and the +transformation is inserted to only one of the links. + +The local gauge invariance now implies that there is an exact discrete +continuity equation + +.. math:: + + \sum_{j\in{}N_i} J_{ij}^a + = + \frac{\partial}{\partial\xi} + S[Q(i)\mapsto{}e^{\xi T^a}Q(i)e^{-\xi T^a}]\rvert_{\xi=0} + = + \frac{\partial}{\partial\xi} + S[\Omega(i)\mapsto{}e^{-\xi T^a}\Omega(i)e^{\xi T^a}]\rvert_{\xi=0} + = + R_{i}^a + \,. + +This is one main advantage of the procedure, in addition to its +invariance vs. gauge fixing. + +However, the definition of the matrix current is *asymmetric*, so that +:math:`J_{ij}\ne{}-J_{ji}` as they differ by a quantity of order +:math:`\mathcal{O}(h^2)`. The asymmetry arises when :math:`T^a` does not +commute with :math:`U_{ij}`, so it is an issue only for the SU(2) +component. The problem is only in the interpretation. + +The currents measured at sites *i* and *j* are different: since the +parallel transport of spin between these two locations can imply +rotation due to the gauge field, there’s no reason why we should have +:math:`J_{ij}=-J_{ji}`, except in the continuum limit where the two +points become close to each other. + +Implementation +-------------- + +The above is sufficient for numerical implementation: it is not +necessary to find out the saddle point equation symbolically. It can be +deduced by parametrizing first so that :math:`Q^2=1` and then using +automatic differentiation (AD). Only a routine evaluating the value of +the action is then needed, in terms of the AD dual variables. + +When looking for the saddle point in equilibrium, the problem becomes +even simpler; *Q* has then additional restrictions, and we are looking +for the minimum of the free energy *S*. diff --git a/doc/index.rst b/doc/index.rst new file mode 100644 index 0000000..0525815 --- /dev/null +++ b/doc/index.rst @@ -0,0 +1,20 @@ +.. usadelndsoc documentation master file, created by + sphinx-quickstart on Tue Apr 23 13:16:43 2024. + You can adapt this file completely to your liking, but it should at least + contain the root `toctree` directive. + +usadelndsoc +=========== + +.. toctree:: + :maxdepth: 2 + :caption: Contents: + + discretization + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/doc/pandoc/convert.sh b/doc/pandoc/convert.sh deleted file mode 100755 index 1c4608d..0000000 --- a/doc/pandoc/convert.sh +++ /dev/null @@ -1,8 +0,0 @@ -#!/bin/bash -PDIR=$(dirname "$0") -pandoc --from markdown --to html \ - --embed-resources --standalone \ - --lua-filter $PDIR/gitlab-math.lua \ - --lua-filter $PDIR/fix-links.lua \ - --katex \ - -o "${1/.md/.html}" "$1" diff --git a/doc/pandoc/fix-links.lua b/doc/pandoc/fix-links.lua deleted file mode 100644 index 36ac7dc..0000000 --- a/doc/pandoc/fix-links.lua +++ /dev/null @@ -1,44 +0,0 @@ --- see if the file exists -function file_exists(file) - local f = io.open(file, "rb") - if f then f:close() end - return f ~= nil -end - --- 1. Replaces .md with .html --- 2. Replaces absolute paths with relative ones --- 3. Replaces folder links with links to their index / readme -function fix_link (url) - -- Replace md with html - fixed_url = url:gsub("%.md", ".html") - -- Replace project-root-relative (i.e. /path/to/thing.md) paths with relative ones - fixed_url = fixed_url:gsub("^/", ( - function(s) - basedir = io.popen("realpath --relative-to=\"$(dirname \"" .. s:sub(2) .. "\")\" .", 'r'):read('*a') - return basedir:gsub("%s", "") .. "/" .. s:sub(2) - end - )) - -- Allowed readme / index names - dir_name = {} -- values are functions that return the path to the new link - dir_name["index.md"] = (function(s) return s:gsub("/?$", "/index.html") end) - dir_name["INDEX.md"] = (function(s) return s:gsub("/?$", "/INDEX.html") end) - dir_name["readme.md"] = (function(s) return s:gsub("/?$", "/readme.html") end) - dir_name["README.md"] = (function(s) return s:gsub("/?$", "/README.html") end) - -- Is the url pointing to a folder? - file_or_folder = io.popen("[ -d '" .. fixed_url .. "' ] && echo 'folder'", 'r'):read('*a') - -- If it's a folder, find the readme / index and replace the link with that. - if file_or_folder:gsub("%s", "") == "folder" then - for index,mk_path in pairs(dir_name) do - if file_exists(fixed_url .. "/" .. index) then - fixed_url = mk_path(fixed_url) - break - end - end - end - return fixed_url -end - - -function Link(link) link.target = fix_link(link.target); return link end -function Image(img) img.src = fix_link(img.src); return src end --- return {{Meta = Meta}, {Link = Link, Image = Image}} \ No newline at end of file diff --git a/doc/pandoc/gitlab-math.lua b/doc/pandoc/gitlab-math.lua deleted file mode 100644 index 6161031..0000000 --- a/doc/pandoc/gitlab-math.lua +++ /dev/null @@ -1,18 +0,0 @@ -function Math(el) - if el.mathtype == "InlineMath" then - if el.text:sub(1,1) == '`' and el.text:sub(#el.text) == '`' then - local text = el.text:sub(2,#el.text-1) - return pandoc.Math(el.mathtype, text) - else - local cont = pandoc.read(el.text) - return el - --return { pandoc.Str("$") } .. cont.blocks[1].content .. { pandoc.Str("$") } - end - end -end - -function CodeBlock(el) - if el.classes[1] == "math" then - return pandoc.Para({ pandoc.Math("DisplayMath", el.text) }) - end -end diff --git a/meson.build b/meson.build index ddd2aef..bafe4e1 100644 --- a/meson.build +++ b/meson.build @@ -41,7 +41,6 @@ incdir_numpy = run_command(py3, ], check: true ).stdout().strip() -cc = meson.get_compiler('cpp') numpy_dep = declare_dependency( compile_args : ['-DNPY_NO_DEPRECATED_API=NPY_1_9_API_VERSION'], include_directories : [include_directories(incdir_numpy)], @@ -66,3 +65,4 @@ deps = [cppad_dep, eigen3_dep] #executable('main2', ['src/xtest.f95', 'src/adjac/adjac.f95']) subdir('usadelndsoc') +subdir('doc') diff --git a/usadelndsoc/meson.build b/usadelndsoc/meson.build index 3da9aed..21fc6d7 100644 --- a/usadelndsoc/meson.build +++ b/usadelndsoc/meson.build @@ -1,4 +1,4 @@ -py3.extension_module( +usadelndsoc_pymod = py3.extension_module( '_core', ['../src/core.cpp'], dependencies : deps + [numpy_dep, py3_dep, pybind11_dep], -- GitLab