From 609bf835c70fe3ccb6b3cd9dd8af8481053b48e4 Mon Sep 17 00:00:00 2001 From: Pauli Virtanen <pauli.t.virtanen@jyu.fi> Date: Mon, 29 Aug 2022 16:17:58 +0300 Subject: [PATCH] DOC --- doc/discretization.md | 19 +++++++++---------- 1 file changed, 9 insertions(+), 10 deletions(-) diff --git a/doc/discretization.md b/doc/discretization.md index 5b4f913..ced0315 100644 --- a/doc/discretization.md +++ b/doc/discretization.md @@ -12,7 +12,7 @@ The action is \,, ``` where $`\hat{\nabla}_j Q = \partial_j Q - i[\mathcal{A}_j, Q]`$ -and $\Omega = \epsilon\tau_3 + i\Delta$, $\Delta^\dagger = \Delta$. +and $`\Omega = \epsilon\tau_3 + i\Delta$, $\Delta^\dagger = \Delta`$. We'd like the discretized functional to be also gauge invariant. We subdivide the space to cells, centered on a rectangular lattice @@ -21,15 +21,14 @@ and $h$ are the lattice spacings. See the figure below:  -We choose $`Q(j) = Q(\vec{r}_j)`$ to be values of $`Q`$ at the lattice sites. We define the Wilson link matrices -$`U_{ij} =U_{ji}^{-1} =U(\vec{r}_{i},\vec{r}_{j}) = \mathrm{Pexp}[i\int_{L(\vec{r}_i,\vec{r}_j)}d\vec{r}'\,\cdot\vec{\mathcal{A}}(\vec{r}')]`$ -where $`L(\vec{r}_i,\vec{r}_j)`$ is straight line from $`\vec{r}_j`$ to -$`\vec{r}_i`$ and $`\mathrm{Pexp}`$ is the path-ordered integral. -The neighbor cells of $`j`$ are $`i\in{}\mathrm{neigh}(j)`$ -ie. $`i=(j_x\pm1,j_y,j_z)$, $i=(j_x,j_y\pm1,j_z)`$, -$`i=(j_x,j_y,j_z\pm1)`$. Since the gauge field $`\vec{\mathcal{A}}`$ is -fixed, the link matrices can be computed cheaply, and there's no need -to expand them. +We choose $`Q(j) = Q(\vec{r}_j)`$ to be values of $`Q`$ at the lattice +sites. We define the Wilson link matrices $`U_{ij} =U_{ji}^{-1} +=U(\vec{r}_{i},\vec{r}_{j}) = +\mathrm{Pexp}[i\int_{L(\vec{r}_i,\vec{r}_j)}d\vec{r}'\,\cdot\vec{\mathcal{A}}(\vec{r}')]`$ +where $`L(\vec{r}_i,\vec{r}_j)`$ is straight line from $`\vec{r}_j`$ +to $`\vec{r}_i`$ and $`\mathrm{Pexp}`$ is the path-ordered integral. +Since the gauge field $`\vec{\mathcal{A}}`$ is fixed, the link +matrices can be computed ahead of time. We want a discretized theory that is invariant under the discrete gauge transformation ```math -- GitLab