From 2ace65385a3fc63bbaaeff8f9332ce6930a5ff91 Mon Sep 17 00:00:00 2001 From: Pauli Virtanen <pauli.t.virtanen@jyu.fi> Date: Wed, 21 Sep 2022 15:35:33 +0300 Subject: [PATCH] examples: make cpr_sns produce a plot --- examples/cpr_sns.py | 35 ++++++++++++++++++----------------- 1 file changed, 18 insertions(+), 17 deletions(-) diff --git a/examples/cpr_sns.py b/examples/cpr_sns.py index 371a2ce..5c1a543 100644 --- a/examples/cpr_sns.py +++ b/examples/cpr_sns.py @@ -15,6 +15,8 @@ from usadelndsoc.matsubara import get_matsubara_sum from usadelndsoc.solver import * from usadelndsoc.util import vectorize_parallel +import collections + mem = joblib.Memory("cache") @@ -49,9 +51,13 @@ def get_solver(soc_alpha, eta, phi, L=10, h=0.5, D=1.0, n=5): return sol -# @usadelndsoc.with_log_level(logging.WARNING) +Res = collections.namedtuple("Res", ["x", "y", "J", "Jx", "Jy"]) + + @vectorize_parallel(returns_object=True, noarray=True) +@usadelndsoc.with_log_level(logging.WARNING) def j(T, h, phi, n=15, eta=0.1, alpha_soc=0.1, L=10, perturbative=False): + sol = get_solver(soc_alpha=alpha_soc, eta=eta, L=L, n=n, phi=phi, h=h) E_typical = 10 + 10 * T @@ -67,29 +73,24 @@ def j(T, h, phi, n=15, eta=0.1, alpha_soc=0.1, L=10, perturbative=False): Jx = (J[:, :, 0] + J[:, :, 2]).real / 2 Jy = (J[:, :, 1] + J[:, :, 3]).real / 2 - return sol.x, sol.y, J, Jx, Jy + return Res(sol.x, sol.y, J, Jx, Jy) def main(): - T = 0.02 - alpha_soc = 0.05 - Da2 = alpha_soc**2 - h = np.linspace(0, 1.75, 29) + T = 0.1 + alpha_soc = 0.1 + h = 0.5 + phi = np.linspace(-pi, pi, 37) - res = j_anom(T, h, alpha_soc=alpha_soc, perturbative=False, mem=mem) - j = np.asarray([x[0] for x in res]) - j_an = np.asarray([x[1] for x in res]) + res = j(T, h, phi, alpha_soc=alpha_soc, perturbative=False, mem=mem) - t3 = np.diag([1, 1, -1, -1]) - j = tr(j @ t3)[:, 2, 2, UP] + Jx_mean = np.asarray([x.Jx[1:-1].sum(axis=1).mean(axis=0) for x in res]) - plt.plot(h, -j.real, "-", label=r"numerics") - plt.plot(h, -j_an.real, "--", label=r"analytic") - plt.title(rf"$T = {T} \Delta$, $D\alpha^2 = {Da2:.4} \Delta$") - plt.xlabel(r"$h/\Delta$") - plt.ylabel(r"$j_{\mathrm{an}}$") + plt.plot(phi / pi, Jx_mean) + plt.xlabel(r"$\varphi / \pi$") + plt.ylabel(r"$I$") plt.legend() - plt.savefig("bulk_j_an.pdf") + plt.savefig("cpr_sns.pdf") if __name__ == "__main__": -- GitLab