--- title: "Overview simulated data" author: "CB" date: "`r format(Sys.time(), '%d %m, %Y')`" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ```{r, include=FALSE} path <- paste0(getwd(),"/") # source(paste0(path,"Main.R")) ### DEFINE simulation variant ### # only the following three, special set aside simulations are bind # # sim_variant: "Without" # "CC45" # "CC85" sim_variant = "CC85" library(tidyr) library(dplyr) library(ggplot2) library(knitr) library(kableExtra) #### Load the data # Simulation results of all management regimes, SA includes DW extraction rslt <- read.csv(paste0(path, "output/rslt_", sim_variant, "_all.csv" ), sep = ";", header = TRUE, stringsAsFactors = FALSE) # Simulation results only for set aside without DW extraction rslt_SA <- read.csv(paste0(path, "output/rslt_", sim_variant,"_SA_all.csv" ), sep = ";", header = TRUE, stringsAsFactors = FALSE) rslt <- rslt %>% rbind(rslt_SA) ``` ### Simulated Climate Change: `r sim_variant ` ### Names of the restructured GPKGs ```{r, echo=TRUE} gpkg <- unique(rslt$gpkg) print(gpkg) ``` ### Simulated branching_groups All simulated branching_groups must be listed in the file /params/regimes.csv !! Based on this the regime names are merged to the results. ```{r, echo = FALSE} # simulated_regimes <- unique(rslt$regime) # print(simulated_regimes) sim_branching_group <- unique(rslt$branching_group) print(sim_branching_group) print(unique(rslt$regime)) ``` ### Number of simulated stands per GPKG and their size ```{r, echo = TRUE} stands <- rslt %>% group_by(gpkg) %>% summarise(simulated_stands = n_distinct(id), min_stand_size = min(AREA), max_stand_size = max(AREA), mean_size = mean(AREA)) kable(stands) %>% kable_styling() ``` ### Development of average stand volume V (m3/ha) #### for certain regimes Volume development of "SA" and "SA_DWextract" should be identical ```{r} meanV <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract"), ] %>% group_by(year, regime, gpkg) %>% summarise(meanV = mean(V)) %>% ggplot(aes(year, meanV)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + scale_y_continuous(limit = c(0,700)) + facet_wrap(. ~gpkg) plot(meanV) ``` #### only for CCF regimes ```{r} meanV_CCF <- rslt[rslt$regime %in% c("CCF_1", "CCF_2", "CCF_3", "CCF_4"), ] %>% group_by(year, regime, gpkg) %>% summarise(meanV = mean(V)) %>% ggplot(aes(year, meanV)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + # scale_y_continuous(limit = c(0,700)) + facet_wrap(. ~gpkg) plot(meanV_CCF) ``` ### Development of average h_dom for certain regimes ```{r} meanH_dom <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract") , ] %>% group_by(year, regime, gpkg) %>% summarise(meanH_dom = mean(H_dom, na.rm = TRUE )) %>% ggplot(aes(year, meanH_dom)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + facet_wrap(. ~gpkg) plot(meanH_dom) ``` ### What is the maximum H_dom per watershed, and which regime is causing it ```{r, warning=FALSE, message=FALSE} require(data.table) dt <- data.table(rslt) max <- dt[ , max(H_dom, na.rm = TRUE ), by = gpkg] max <- max %>% rename(H_dom = V1 ) maxH_dom <- rslt %>% semi_join(max, by = c("gpkg","H_dom")) %>% select(gpkg, id, year, regime, H_dom) kable(maxH_dom) %>% kable_styling() ``` ### Development of average V_total_deadwood (m3/ha) for certain regimes ```{r} meanDW <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract") , ] %>% group_by(year, regime, gpkg) %>% summarise(mean_DW = mean(V_total_deadwood)) %>% ggplot(aes(year, mean_DW)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + facet_wrap(. ~gpkg) plot(meanDW) ``` ### Development of average CARBON_STORAGE (kg/ha) for certain regimes ```{r} meanCS <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>% group_by(year, regime, gpkg) %>% summarise(mean_CS = mean(CARBON_STORAGE, na.rm = TRUE )/1000) %>% ggplot(aes(year, mean_CS)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + facet_wrap(. ~gpkg) plot(meanCS) ``` ### Average harvested timber volume (m3/ha) for certain regimes Cash flow = The sum of all revenues and costs for a specific forest stand ```{r} meanHarvested_V <- rslt[rslt$regime %in%c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>% group_by(year, regime, gpkg) %>% mutate(Harvested_V = ifelse(is.na(Harvested_V), 0, Harvested_V)) %>% summarise(meanHarvested_V = mean(Harvested_V), na.rm = TRUE) %>% ggplot(aes(year, meanHarvested_V)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + facet_wrap(. ~gpkg) plot(meanHarvested_V) ``` ### Average cash flow (Euro/ha) for certain regimes Cash flow = The sum of all revenues and costs for a specific forest stand ```{r} meanCash <- rslt[rslt$regime %in%c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>% group_by(year, regime, gpkg) %>% mutate(cash_flow = ifelse(is.na(cash_flow), 0, cash_flow)) %>% summarise(meanCash = mean(cash_flow), na.rm = TRUE) %>% ggplot(aes(year, meanCash)) + geom_line( aes(color = regime)) + theme(axis.text.x = element_text(angle = 90)) + scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) + facet_wrap(. ~gpkg) plot(meanCash) ```