##### # # Import SIMO Results (SQLite-Databases) in R environment # and save a dataframe in folder /output # # 2019-07-12 # ##### ## load libraries library(RSQLite) library(tidyr) library(dplyr) ### Load management regimes # --------------------------- # Management regimes and their abbreviation, they are merged to the data by the branching group (script loadDB.R) regime <- read.csv(paste0(path, "/params/regimes.csv"), sep = ",", stringsAsFactors = FALSE) # Variant 1: create a single dataframe for each SQL Database (selected columns of table UNIT) # Dataframes are given the names of the DB and column "name" is added with the name of the DB # Create an empty list to store all output dataframes into one all.out = NULL for (name in db_names){ # Connect to db db <- dbConnect(dbDriver("SQLite"), dbname = paste(inputFolder, paste0(name, ".db"), sep = "/")) # Select indicated columns rsl <- dbGetQuery( db, paste0("select ", columns, " from UNIT")) # Create output name, Remove the 'simulated_' outName <- gsub("simulated_", "", name) # Add gpkg indication rsl$name <- outName # Disconnect database dbDisconnect(db) ### Add the abbreviation of the regimes rsl <- rsl %>% left_join(regime, by = "branching_group", all.x = TRUE) # --------------------------------- # Rename set aside scenario if it considers deadwood extraction # --------------------------------- if(!grepl("_SA", name)){ rsl <- rsl %>% mutate(regime = ifelse(regime %in% "SA", "SA_DWextract", # YES regime)) # NO print(name) print("SA renamed to SA_DWextract") } # Export the final table and print it out print(paste0("writing csv for ", outName)) # Create a list of all dataframes all.out <- rbind(all.out, rsl) # Write individual tables write.table(rsl, paste0(outputFolder, "/", outName, ".csv" ), sep = ";", row.names = F, col.names = TRUE) #assign( paste("rsl", name, sep="_"), rsl) #rm(db, rsl) } # Variant 2: create one huge dataframe combining all SQL databases (selected columns of table UNIT) # Save all databases in the one giant table if (all_in_one == TRUE) { outName = "rslt_all" write.table(all.out, paste0(outputFolder, "/", outName, ".csv" ), sep = ";", row.names = F, col.names = TRUE) } # ################################################################## # ################################################################## # # # ##### Getting all Colnames from a SQL querry # # # # was used to create List of SIMO output -> What indicators can be calculate for ES # # db <- dbConnect(dbDriver("SQLite"), dbname = paste0(path,"/input_data/simulated_CC0_p_MV_Korsnas_rsu.db")) # rsl <- dbGetQuery(db, 'select * from UNIT') # dbDisconnect(db) # # colnames <- colnames(rsl) # noquote(colnames) # write.table(colnames, paste0(path,"/temp/SQL_FBE_colnames_newIndices.csv"), row.names = FALSE) # # # # comapare the names of to df # # onlyinCC <- colnames_CC45[!colnames_CC45 %in% colnames_without]