gpkg <- unique(rslt$gpkg)
print(gpkg)
## [1] "MV_Hartola" "MV_Kitee" "MV_Korsnas" "MV_Parikkala"
## [5] "MV_Pori" "MV_Pyhtaa" "MV_Raasepori" "MV_Simo"
## [9] "MV_Vaala" "MV_Voyri"
All simulated branching_groups must be listed in the file /params/regimes.csv !! Based on this the regime names are merged to the results.
## [1] NA
## [2] "Selection cut_1"
## [3] "Selection cut_2"
## [4] "Selection cut_3"
## [5] "Selection cut_4"
## [6] "Tapio thinning"
## [7] "Tapio thinning nature"
## [8] "Short rotation thinning 5"
## [9] "Long rotation thinning 5"
## [10] "Long rotation thinning 10"
## [11] "Long rotation thinning 15"
## [12] "Long rotation thinning 30"
## [13] "Tapio harvest without thinnings -20"
## [14] "Short rotation harvest 5"
## [15] "Tapio harvest"
## [16] "Tapio harvest nature scene"
## [17] "Tapio harvest without thinnings"
## [18] "Long rotation harvest 5"
## [19] "Long rotation harvest 10"
## [20] "Tapio harvest without thinnings 10"
## [21] "Long rotation harvest 15"
## [22] "Long rotation harvest 30"
stands <- rslt %>%
group_by(gpkg) %>%
summarise(simulated_stands = n_distinct(id),
min_stand_size = min(AREA),
max_stand_size = max(AREA),
mean_size = mean(AREA))
kable(stands) %>% kable_styling()
gpkg | simulated_stands | min_stand_size | max_stand_size | mean_size |
---|---|---|---|---|
MV_Hartola | 154 | 0.126 | 8.209 | 1.1101635 |
MV_Kitee | 29 | 0.316 | 2.404 | 1.1518026 |
MV_Korsnas | 296 | 0.109 | 11.691 | 1.0440740 |
MV_Parikkala | 284 | 0.091 | 4.483 | 1.0518901 |
MV_Pori | 207 | 0.112 | 7.130 | 1.0634400 |
MV_Pyhtaa | 120 | 0.154 | 8.052 | 1.2779667 |
MV_Raasepori | 200 | 0.025 | 5.350 | 1.0895248 |
MV_Simo | 290 | 0.070 | 10.892 | 1.4250971 |
MV_Vaala | 24 | 0.183 | 4.682 | 1.7068152 |
MV_Voyri | 190 | 0.078 | 4.524 | 0.9030168 |
meanV <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_1") , ] %>%
group_by(year, regime, gpkg) %>%
summarise(meanV = mean(V)) %>%
ggplot(aes(year, meanV)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
scale_y_continuous(limit = c(0,700)) +
facet_wrap(. ~gpkg)
plot(meanV)
Cash flow = The sum of all revenues and costs for a specific forest stand
meanCash <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_1") , ] %>%
group_by(year, regime, gpkg) %>%
mutate(cash_flow = ifelse(is.na(cash_flow), 0, cash_flow)) %>%
summarise(meanCash = mean(cash_flow), na.rm = TRUE) %>%
ggplot(aes(year, meanCash)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanCash)