gpkg <- unique(rslt$gpkg)
print(gpkg)
## [1] "MV_Hartola" "MV_Kitee" "MV_Korsnas" "MV_Parikkala" "MV_Pori"
## [6] "MV_Pyhtaa" "MV_Raasepori" "MV_Simo" "MV_Vaala" "MV_Voyri"
All simulated branching_groups must be listed in the file /params/regimes.csv !! Based on this the regime names are merged to the results.
## [1] NA "Selection cut_1"
## [3] "Selection cut_2" "Selection cut_3"
## [5] "Selection cut_4" "Tapio thinning"
## [7] "Tapio thinning nature" "Short rotation thinning 5"
## [9] "Long rotation thinning 5" "Long rotation thinning 10"
## [11] "Long rotation thinning 15" "Long rotation thinning 30"
## [13] "Tapio harvest without thinnings -20" "Short rotation harvest 5"
## [15] "Tapio harvest" "Tapio harvest nature scene"
## [17] "Tapio harvest without thinnings" "Long rotation harvest 5"
## [19] "Long rotation harvest 10" "Tapio harvest without thinnings 10"
## [21] "Long rotation harvest 15" "Long rotation harvest 30"
## [1] "SA_DWextract" "CCF_1" "CCF_2" "CCF_3" "CCF_4"
## [6] "BAUwT" "BAUwT_GTR" "BAUwT_m5" "BAUwT_5" "BAUwT_10"
## [11] "BAUwT_15" "BAUwT_30" "BAUwoT_m20" "BAU_m5" "BAU"
## [16] "BAUwGTR" "BAUwoT" "BAU_5" "BAU_10" "BAUwoT_10"
## [21] "BAU_15" "BAU_30" "SA"
stands <- rslt %>%
group_by(gpkg) %>%
summarise(simulated_stands = n_distinct(id),
min_stand_size = min(AREA),
max_stand_size = max(AREA),
mean_size = mean(AREA))
kable(stands) %>% kable_styling()
gpkg | simulated_stands | min_stand_size | max_stand_size | mean_size |
---|---|---|---|---|
MV_Hartola | 154 | 0.126 | 8.209 | 1.112990 |
MV_Kitee | 29 | 0.316 | 2.404 | 1.152039 |
MV_Korsnas | 297 | 0.109 | 11.691 | 1.038666 |
MV_Parikkala | 284 | 0.091 | 4.483 | 1.045226 |
MV_Pori | 207 | 0.112 | 7.130 | 1.062409 |
MV_Pyhtaa | 120 | 0.154 | 8.052 | 1.287290 |
MV_Raasepori | 200 | 0.025 | 5.350 | 1.086739 |
MV_Simo | 290 | 0.070 | 10.892 | 1.421866 |
MV_Vaala | 24 | 0.183 | 4.682 | 1.682645 |
MV_Voyri | 190 | 0.078 | 4.524 | 0.903005 |
Volume development of “SA” and “SA_DWextract” should be identical
meanV <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract"), ] %>%
group_by(year, regime, gpkg) %>%
summarise(meanV = mean(V)) %>%
ggplot(aes(year, meanV)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
scale_y_continuous(limit = c(0,700)) +
facet_wrap(. ~gpkg)
plot(meanV)
meanV_CCF <- rslt[rslt$regime %in% c("CCF_1", "CCF_2", "CCF_3", "CCF_4"), ] %>%
group_by(year, regime, gpkg) %>%
summarise(meanV = mean(V)) %>%
ggplot(aes(year, meanV)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
# scale_y_continuous(limit = c(0,700)) +
facet_wrap(. ~gpkg)
plot(meanV_CCF)
meanH_dom <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract") , ] %>%
group_by(year, regime, gpkg) %>%
summarise(meanH_dom = mean(H_dom, na.rm = TRUE )) %>%
ggplot(aes(year, meanH_dom)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanH_dom)
require(data.table)
dt <- data.table(rslt)
max <- dt[ , max(H_dom, na.rm = TRUE ), by = gpkg]
max <- max %>% rename(H_dom = V1 )
maxH_dom <- rslt %>%
semi_join(max, by = c("gpkg","H_dom")) %>%
select(gpkg, id, year, regime, H_dom)
kable(maxH_dom) %>% kable_styling()
gpkg | id | year | regime | H_dom |
---|---|---|---|---|
MV_Hartola | 9914063 | 2106 | CCF_2 | 32.95013 |
MV_Kitee | 24153294 | 2111 | CCF_4 | 33.77057 |
MV_Korsnas | 13141993 | 2111 | CCF_3 | 30.70894 |
MV_Parikkala | 24718720 | 2106 | CCF_2 | 36.28994 |
MV_Pori | 27925448 | 2106 | CCF_4 | 36.09263 |
MV_Pyhtaa | 32627001 | 2111 | BAUwT_30 | 31.21540 |
MV_Raasepori | 29606206 | 2101 | CCF_3 | 40.58453 |
MV_Simo | 29010751 | 2111 | CCF_4 | 29.94783 |
MV_Vaala | 32442373 | 2111 | CCF_3 | 26.32676 |
MV_Voyri | 10882587 | 2111 | CCF_3 | 31.70397 |
meanDW <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR", "SA_DWextract") , ] %>%
group_by(year, regime, gpkg) %>%
summarise(mean_DW = mean(V_total_deadwood)) %>%
ggplot(aes(year, mean_DW)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanDW)
meanCS <- rslt[rslt$regime %in% c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>%
group_by(year, regime, gpkg) %>%
summarise(mean_CS = mean(CARBON_STORAGE, na.rm = TRUE )/1000) %>%
ggplot(aes(year, mean_CS)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanCS)
Cash flow = The sum of all revenues and costs for a specific forest stand
meanHarvested_V <- rslt[rslt$regime %in%c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>%
group_by(year, regime, gpkg) %>%
mutate(Harvested_V = ifelse(is.na(Harvested_V), 0, Harvested_V)) %>%
summarise(meanHarvested_V = mean(Harvested_V), na.rm = TRUE) %>%
ggplot(aes(year, meanHarvested_V)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanHarvested_V)
Cash flow = The sum of all revenues and costs for a specific forest stand
meanCash <- rslt[rslt$regime %in%c("BAU", "SA", "CCF_2", "BAUwGTR") , ] %>%
group_by(year, regime, gpkg) %>%
mutate(cash_flow = ifelse(is.na(cash_flow), 0, cash_flow)) %>%
summarise(meanCash = mean(cash_flow), na.rm = TRUE) %>%
ggplot(aes(year, meanCash)) +
geom_line( aes(color = regime)) +
theme(axis.text.x = element_text(angle = 90)) +
scale_x_continuous(breaks=c(2016, 2026, 2036, 2046, 2056, 2066, 2076, 2086, 2096, 2106)) +
facet_wrap(. ~gpkg)
plot(meanCash)